MK 1002 P MK 1002 N

MOS Static Shift Register

MOSTEK

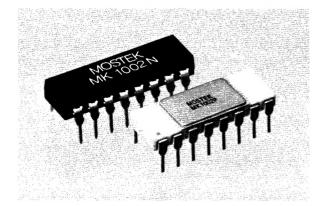
FEATURES:

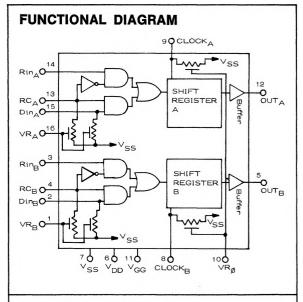
- Ion-implanted for full TTL/DTL compatibility no interface circuitry required
- □ Single-phase, TTL/DTL compatible clocks
- Dual 128-bit static shift registers 256 bits total
- Dual sections have independent clocks
- □ Recirculate logic built in
- DC to 1 MHz clock rates
- □ Low power dissipation 130 mW
- 🗋 16-pin dual-in-line package

APPLICATIONS

- Delay lines
- Buffer data storage
- Recycling test data sequencer
- Digital filtering

DESCRIPTION


The MK 1002 is a P-channel MOS static shift register utilizing low threshold-voltage processing and ion-implantation to achieve full TTL/DTL compatibility. Each of the two independent 128 bit sections has a built-in clock generator to generate three internal clock phases from a single-phase TTL-level external input. In addition, each section has input logic for loading or recirculating data within the register. (See Functional Diagram.) The positive-logic Boolean expression for this action is:


OUT (delayed 128 bits) = $(R_c) (D_{in}) + (\overline{R_c}) (R_{in})$

The Data, Recirculate Control, and Clock inputs are provided

with internal pull-up resistors to V_{ss} (+5V) for use when driving from TTL. These resistors can be disabled when driving from circuitry with larger output-voltage swings, such as DTL. Enabling of pull-up resistors is accomplished by connecting the appropriate terminal to V_{GG} ; disabling by connecting to V_{ss} . The Recirculate inputs are not provided with pull-up resistors since they are generally driven from MOS.

Shifting data into the register is accomplished while the Clock input is low. Output data appears following the positivegoing Clock edge. Data in each register can be held indefinitely by maintaining the Clock input high.

OPERATING NOTES

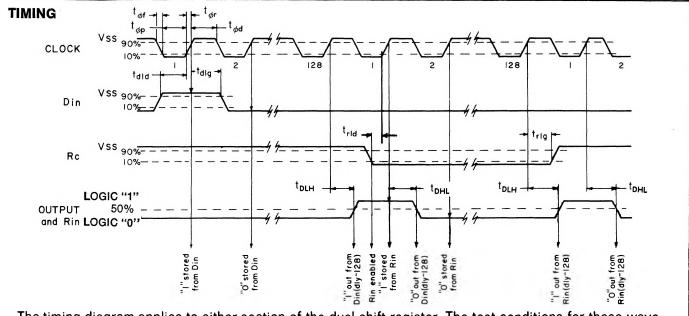
Rc	R _{in}	D _{in}	DATA ENTERED		
1	Х	1	1		
1	х	0	0		
0	1	х	1		
0	0	х	0		
"1" = V _{ss} "0" = V _{DE} X = No Dutput Log	$\mathbf{G} = \mathbf{Grd}$	escriptio	٦.		

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V _{DD}							$ V_{ss} = 10.0 V$
Supply Voltage, V _{GG}	•						$ V_{ss} = 20.0 V$
Voltage at any Input or Output							
Operating Free-air Temperature Range							
Storage Temperature Range			•				—55°C to +150°C

RECOMMENDED OPERATING CONDITIONS ($0^{\circ}C \leq T_{A} \leq 75^{\circ}C$)

		PARAMETER	MIN	ТҮР	MAX	UNITS	COMMENTS
E	V _{ss}	Supply Voltage	4.75	5.0	5.25	v	$V_{DD} = 0 V$
POWER	V _{GG}	Supply Voltage ⁽¹⁾	—12.6	—12.0	11.4	v	
STI	V _{IL}	Input Voltage, Logic 0(2)		0	V _{ss} _4	v	
INPUTS	V _{IH}	Input Voltage, Logic 1	V _{ss} —1	5.0	V _{ss}	v	
	f	Clock Repetition Rate	DC		1	MHz	
	t _{øp}	Clock Pulse Width	0.35		10	μS	
	tød	Clock Pulse Delay	0.4			μS	See
INPUT TIMING	t _¢ ,	Clock Pulse Risetime	.010		0.2	μS	Timing
Ē	t _{øf}	Clock Pulse Falltime	.010		0.2	μS	Diagram
Inat	t _{did}	Data Leadtime	50			ns	-
=	t _{dlg}	Data Lagtime	200			ns	
	t _{rid}	Recirculate Control Leadtime	100			ns	
	t _{fig}	Recirculate Control Lagtime	300			ns	

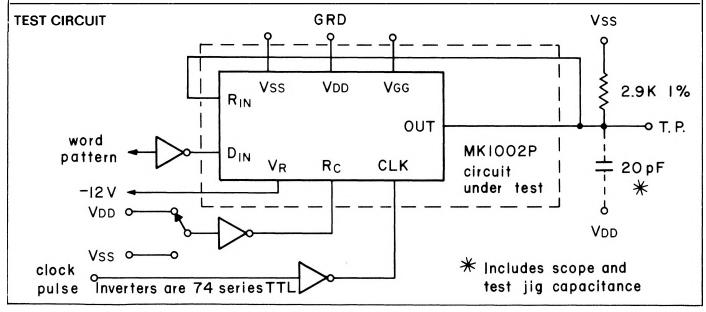

ELECTRICAL CHARACTERISTICS

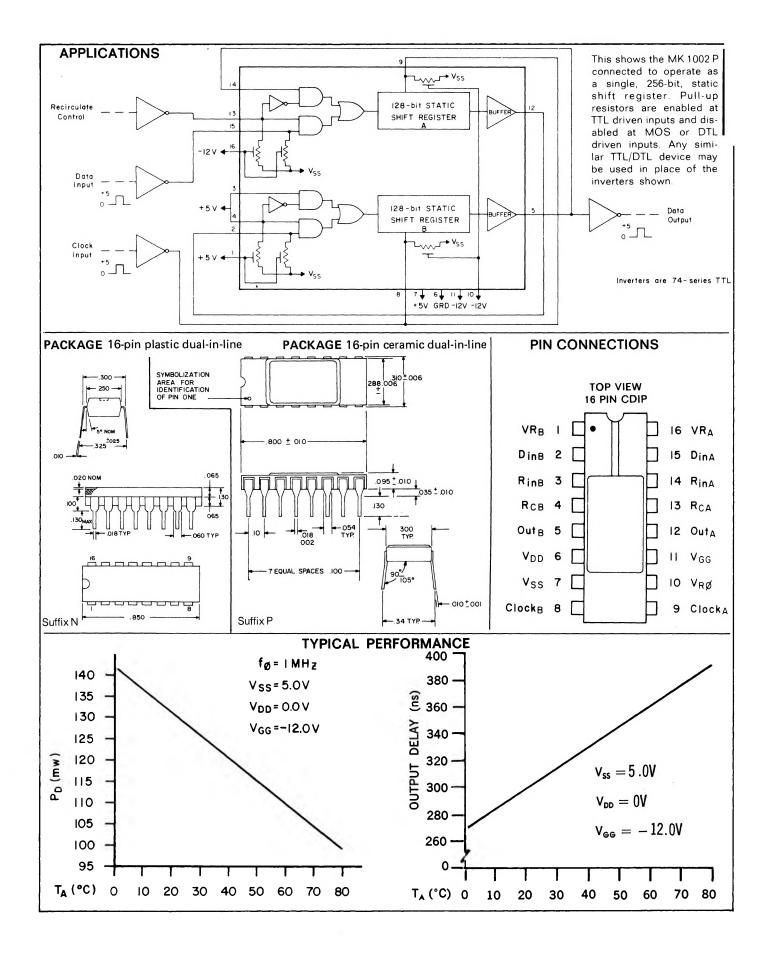
($V_{SS} = +5 \pm 0.25V$, $V_{GG} = -12 \pm 0.6V$, $V_{DD} = 0V$, $T_A = 0^{\circ}C$ to $+75^{\circ}C$, using test circuit shown, unless otherwise noted.)

		PARAMETER	MIN	TYP ³	MAX	UNITS	CONDITIONS
POWER	I _{ss}	Power Supply Current, V _{ss}		14	25	mA	$f_{\phi} = 1 \text{ MHz}$ Inputs & Outputs open
	I _{GG}	Power Supply Current, V _{GG}		5	10	mA	
	C _i	Input Capacitance, any Input		3	10	pF	$V_1 = V_{ss}$, f = 1 MHz $T_A = 25^{\circ}C$
INPUTS	I _{IL}	Input Current, Logic 0: Resistors Disabled ² Resistors Enabled ²	-0.3		40 1.6	μA mA	$V_{1} = V_{ss} - 5V$ $V_{1} = +0.4V$
	I _{IH}	Input Current, Logic 1, Any Input			40	μΑ	$ \begin{array}{l} VR_{A},VR_{B},VR_{\phi}=V_{SS}\\ V_{I}=V_{SS} \end{array} $
	I _{IR{on}}	Input Current at Recirculate Inputs ²			- 40	μΑ	$ \begin{array}{l} VR_{A}, VR_{B}, VR_{\phi} = V_{GG} \\ V_{I} = V_{SS} - SV \end{array} $
OUTPUTS	V _{ol}	Output Voltage, Logic 0 (3)			0.4	V	$I_L = -1.6 \text{ mA}$
OUTF	V _{он}	Output Voltage, Logic 1 (3)	$V_{ss} - 1$			v	$I_L = +100 \ \mu A$
MIC R.	t _{DLH}	Output Delay, Low to High (3)			450	ns	See Timing
	t _{DHL}	Output Delay, High to Low (3)			450	ns	Diagram and
DYNAMIC CHAR.	t _{vor}	Output Voltage Rise Time (3)		100	150	ns	Test
-	t _{voF}	Output Voltage Fall Time (3)		100	150	ns	Circuit

NOTES:

Other supply voltages are permissible providing that supply and input voltages are adjusted to maintain the same potential relative to Vss, e.g., Vss = OV, Vbb = -5 ± 0.25V, Veg = -17 ± 0.85V.
MOS pull-up resistors to + 5V are provided internally. These MOS resistors are enabled by connecting VRA, VRs and VR¢ to Veg, and disabled by connect, ing VRA, VRs and VR¢ to Vss. Pull-up resistors not provided at recirculate inputs.




The timing diagram applies to either section of the dual shift register. The test conditions for these waveforms are illustrated below. A logic "1" is defined as +5 V and a logic "0" is defined as OV

As long as R_c is at a "1", R_{in} is disabled and D_{in} is enabled. The data that is present at D_{in} while the clock is at "0" is shifted in and will be stored as the clock goes to a "1" This data must have been present t_{did} time prior to the clock "1" edge. The data must also remain in that same state for t_{dig} time after that edge. These times are necessary to insure proper data storage in the first register-cell.

On the clock "1" edge, data is shifted through the register causing bit 127 to be shifted to position 128. This cell's output is buffered and appears at the output in the same logic polarity that appeared at the input 128 clocks prior. This data appears within t_{pd} time of the clock "1" edge.

 R_{in} may be hardwired to the data output. When R_c is at a "0", R_{in} is enabled and D_{in} is disabled. Therefore, the output data will appear at the input of the first cell. When R_{in} is tied to the data output, the output delay will insure t_{dig} and t_{did} times. R_c "0" time must lead the clock "1" edge by t_{rid} time and must lag that edge by t_{rig} time to insure proper data storage when recirculate storage is desired.

