Advance Information

2-WATT AUDIO AMPLIFIER

 \dots designed to provide the complete audio system in television, radio and phonograph equipment.

- 2-Watts Continuous Sine Wave Power
- Minimal Heat-Sinking Required for Operation @ T_Δ = 55°C
- Short Circuit Proof (Short-Term)
- High Gain 200 mV for 2-Watts Output Power
- High Input Impedance 500 k Ohms

$ MAXIMUM RATINGS (T_{\Delta} = 25^{\circ}C L$	unless otherwise noted)
--	-------------------------

Rating	Symbol	Value	Unit
Power Supply Voltage	V ⁺	24	Vdc
Output Peak Current	Iр	1.05	Amperes
Maximum Power Output TA = 55°C (Free Air Mounting)	Po	2.0	Watts

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance (Junction to Tab) Derate above 25°C	⊕JC	10 100	°C/W mW/°C
Thermal Resistance (Junction to Ambient) (1) Derate above 25°C	θ_{JA}	60 8.0	°C/W mW/°C

(1)Thermal resistance is measured in still air with fine wires connected to the leads, representing the "worst case" situation.

ing the "worst case" situation. For a larger power requirement, the tab (pin 9) must be soldered to at least one square inch (effective area) of copper foil on the printed circuit board. The $\theta_{\rm JA}$ will be no greater than +45°C/W. Thus, 2.0 Watts of audio power is allowable under "worst case" conditions at an ambient temperature of +65°C, which must be linearly derated at 22.2 mW/°C from +65°C to +150°C.

2-WATT AUDIO AMPLIFIER

Silicon Monolithic Functional Circuit

CASE 641 PLASTIC PACKAGE

FIGURE 1 - TYPICAL CIRCUIT APPLICATION

ELECTRICAL CHARACTERISTICS ($V^+ = 22 \text{ Vdc}$, $T_A = 25 ^{\circ}\text{C}$ unless otherwise specified)

Circuit	Characteristic	Symbol	Min	Тур	Max	Unit
10 M V 12 M 10 R 60 M 10 M 10 M 10 R 60 M 10 M	Quiescent Output Voltage	v _o	-	10	_	Vdc
	Quiescent Drain Current (ein = 0)	iD		12	20	mA
	Sensitivity Input Voltage (e _O = 4.0 V (rms) @ 1.0 kHz, P _O = 2.0 W)	e _{in}	-	-	200	m∨
	Total Harmonic Distortion (P _O = 2.0 W, 1.0 kHz) (P _O = 100 mW, 1.0 kHz)	THD	-	1.0 1.0	10 3.0	%
	Hum and Noise *		1	-40	16	dB

^{*}IHF STANDARD IHF-A-201 1966

Performance Curves for Circuit Shown Above.

Applications Information for Circuit Shown in Figure 1.

FIGURE 6 - ALTERNATE SPEAKER CONNECTION FOR SPEAKER TO GROUND

Figures 7 thru 11 pertain to the 2-watt amplifier with a 16-ohm load connected to V+ as shown in Figure 1. The sensitivity of this amplifier is approximately 250 mV and the input impedance at 100 Hz is approximately 800 k ohms. R7/R5 determines the approximate gain that can be best altered by changing the value of R5 and holding R7 to a large value. This allows the use of a smaller and less expensive capacitor for C2.

The speaker can also be connected to ground as shown in Figure 6, and the printed circuit board art work (1:1 pattern) is shown in Figure 13.

The maximum operation voltage for the amplifier should reflect a consideration of at least a 10% high-line condition. Under high-line conditions, the power supply voltage should be less than the maximum rating of the device.

FIGURE 7 - TOTAL HARMONIC DISTORTION

FIGURE 8 - POWER DISSIPATION

FIGURE 9 - FREQUENCY RESPONSE

f, FREQUENCY (Hz)

FIGURE 10 – PRINTED CIRCUIT BOARD (Speaker to V⁺)

FIGURE 12 - COMPLETED BOARD
(Speaker to V+)

FIGURE 11 - COMPONENT DIAGRAM FOR FIGURE 10

FIGURE 13 – PRINTED CIRCUIT BOARD (Speaker to Ground)

