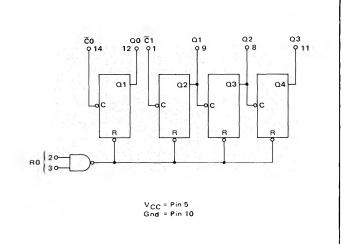
MC5400/7400 series

4-BIT BINARY COUNTER

MC5493L* MC7493L,P*

TRUTH TABLE Connect Q0 to C1

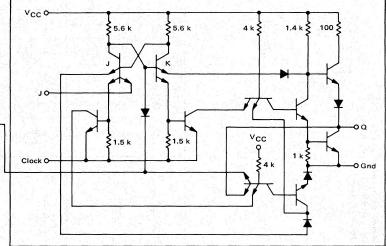
		OUT	PUT	
COUNT	Q3	Q2	Q1	00
0 1 2 3	0 0 0	0 0 0	0 0 1 1	0 1 0
4 5 6 7	0 0 0	1 1 1	0 0 1	0 1 0
8 9 10 11	1 1 1	0 0 0	0 0 1 1	0 1 0
12 13 14	1 1 1	1 1 1	0 0 1	0 1 0


Input Loading Factor R0 = 1 $\overline{C}0.\overline{C}1 = 2$

Output Loading Factor = 10

Total Power Dissipation = 160 mW typ/pkg

Propagation Delay Time = 20 ns typ/bit


This 4-bit counter is comprised of two sections: a divide-by-two section and a divide-by-eight section. These sections can be used independently, or can be connected to provide the divide-by-16 function. All outputs of the counter can be set to the logic "0" state by applying a logic "1" level to the Reset input.

RESET GATE

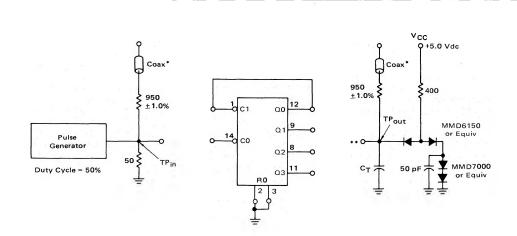
TYPICAL FLIP-FLOP

^{*}L suffix = TO-116 ceramic dual in-line package (Case 632).
P suffix = TO-116 plastic dual in-line package (Case 605).

ELECTRICAL CHARACTERISTICS

Test procedures are shown for only one input of the reset gate. The other input is tested in the same manner.

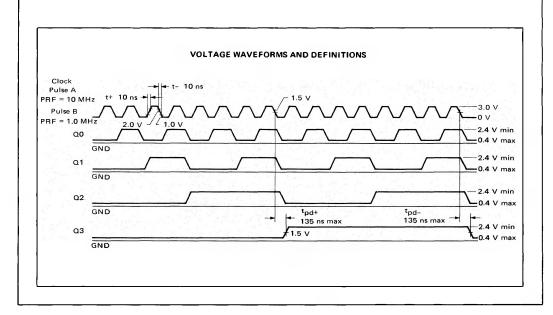
47


												TE	EST CUR	RENT/V	OLTAGE	VALUES	TEST CURRENT/VOLTAGE VALUES (All Temperatures)	peratures)				_
									_	Αm						Volts	Its				П	
										POL	НО	VIL	VIH.	VIHH	VRI	Vth 1	V _{th} 0	Vth L	VCCL	L VCCH	т	
								2	MC5493	16	-0.4	0.4	2.4	5.5	4.5	2.0	0.8	0.7	4.5	5.5		_
								2	MC7493	16	-0.4	0.4	2.4	5.5	4.5	2.0	0.8	0.8	4.75	5.25	.2	
			Pin	MC54	MC5493 Test Limits -55 to +125°C	Limits 5°C	MC74	MC7493 Test Limits 0 to +70°C	imits			TEST	CURREN	IT/VOLT	AGE AP	PLIED TO	PINS LIS	TEST CURRENT/VOLTAGE APPLIED TO PINS LISTED BELOW	:MC		Puls	
Characteristic		Symbol	Test	Min	Max	Unit	Min	Max	Unit	10r	НО	VIE.	Y.	VIHH	VRI	Vth 1	V _{th} 0	VthL	NCCL.	L VCCH	-	Gnd
Input	7					1		⊢														3
Forward Current	S S	4	2,5	1	-1.6	mAdc	1	9.1-	mAde	1	1	7.7	ī	1	m	1	I	1	k)	<u>-</u> ي	1	10
	35		-	1	3.2	-	11	3.5	-		11	2	. 1	Ü	()	1				-	,	-
Leakage Current	RO	lR1	2	ľ	40	µAdc	Ī	40	uAdc .	j	1	1.	2	ų.	T	¥.	1	1	1	25	1	3,10
	0		14	1	80	-	1	80	7	1	T	1	14	ŀ	Y	Ţ	1	1	1	-	1	10
	5		1	+	80		J	80	-		1	ŀ		ı	T	1	U.	1	D	•	-	10
	RO	¹ R2	2	-	1.0	mAde	Ţ	1.0	mAdc	ì	1	1	Ţ	2	Ī	1	1	1	1	2	1	3,10
	818		14	ì	-•	-	1	-	-	ı	1	ì	į.	14	Ī	T	1	1	1	•	1	10
	5		-	1	-		1	-		l,	1	1	1	1)	1	Į.),	1		1	10
Output Output Voltage	00 00	Voi	12	- (0.4	Vdc	1	0.4	Vdc	12	1	1	- 1	1	1	2,3	1	1-1	2	1		10
Short-Circuit Current		SC	-	-20	-57	mAdc	-18	-57	mAde	1	1	1	1	1	1	1	1	14	1	S	14	2,3,10,12
Output Voltage		NO'	-	2.4	1	Vdc	2.4	ī	Vdc	j	12)	i.	J	7	2,3	14	2	1	1	10
	0 10	VOL	6	1	0.4	Vdc	ì	0.4	Vdc	o	1	1	4	J.	1	2,3	В	1	S)	1	10
		SC	4	-20	-57	mAdc	-18	÷	mAde	1	1	ě	£	F	k	1)	-	ľ.	in	-	2,3,9,10
		МОЛ	-	2.4	1	Vdc	2.4	1	Vdc	ì	6	1	1	1	Ī	F	2,3	-	ın	i		10
	02 (1)	VOL	8	1	0.4	Vdc	Î	0.4	Vdc	89	Ť	6),	5	ĵ	2,3		1	5)	1	10
		Sc	-	-20	-57	mAdc	-18	H	mAdc	1	1	1	T	1	1	1	1.	-	1	រព	*	2,3,8,
		νОн	-	2.4	1	Vdc	2.4	1	Vdc	Ľ	œ	1	1	1	1	6	2,3	-	ìn	0	1	10
	03 ①	VOL	11	+	0.4	Vdc	Y	9.0	Vdc	11	1	1	1,	1	ï	2,3	1	+	ın	T.	1	10
		SC SC	-	-20	-57	mAde	-18	-57	mAde	ī	T	1	į	į	ī	1	1	-	I	2	1	2,3,10,
		VOH	•	2.4	Ţ	Vdc	2.4	1	Vdc	1	11	-	1	1	7	7	2,3	-	S)	Y	T	10
Power Requirements (Total Device)		i de	ū	1	A6	mada		23	- Andrew	- 0	n		-	V		1			1	ú		0,
LOWER SUPPLY LINE		O.A.	,		201	and a		_	and a	,			1							2		2

Pulse 1: Apply positive pulse prior to taking measurement to set the device in the desired state.

Maintain Vth L voltage for measurement.

All input, power supply and ground voltages must be maintained between each test unless otherwise noted.


SWITCHING TIME TEST CIRCUIT

f_{Tog} = 10 MHz min

 C_T = 15 pF = total parasitic capacitance, which includes probe, wiring, and load capacitances.

- *The coax delays from input to scope and output to scope must be matched. The scope must be terminated in 50-ohm impedance. The 950-ohm resistor and and the scope termination impedance constitute a 20:1 attenuator probe. Coax shall be CT-070-50 or equivalent.
- **A load is connected to each output during the test.

