MC5400/7400 series

MONOSTABLE MULTIVIBRATOR

MC54121F,L* MC74121F,L,P*

This monostable multivibrator produces accurate output pulses from either edge of an input pulse. The output pulse widths may be varied from 40 nanoseconds to 40 seconds by using appropriate external timing components. Internal compensation provides pulse width stability of better than 1.0% with variation of $V_{\mbox{CC}}$ and ambient temperature. In most applications, overall stability will be determined by the accuracy of the external components. Inputs A1 and A2 trigger on the negative-going edge of the input pulse, and input B triggers on the positive-going edge.

			••••	1705		
tn	INPU	Г	t _{n+}	1 INP	ŪΤ	Ουτρυτ
A1	A2	В	A1	A2	В	
10×0×11×0×011	1 X 0 X 0 1 1 0 X 0 X 1 1	0 1 1 0 1 1 0 1 1 0 0	1 0 X 0 X 0 X 1 1 X 0	1 X O X O O X 1 X 1 1 O X	100111001100	Inhibit Inhibit Inhibit Triggering Triggering Triggering Inhibit Inhibit Inhibit Inhibit Inhibit Inhibit Inhibit

X = Don't care

 t_n = Time period prior to input transition

tn+1 = Time period following input transition

F suffix = TO-86 ceramic flat package (Case 607),
L suffix = TO-116 ceramic dual in-line package (Case 632),
P suffix = TO-116 plastic dual in-line package (Case 605).

ELECTRICAL CHARACTERISTICS

Test procedures are shown for only one A input. The other A input is tested in the same manner.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											TES	T CURR	ENT/VOL	TAGE VA	LUES (A	II Tempera	atures)					
Image: constraint of the constrated dastrated dastraint of the constraint of the constraint of th	06 8				10	10				E	A					Volts						
MODENTIALIZATION MODENTIALIZATION <th co<="" th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>lot</th><th>HOI</th><th>VIL</th><th>HIN</th><th>Инни</th><th>RN R</th><th>Vth 1</th><th>V_{th}0</th><th>VCC</th><th>VCCL</th><th>VCCH</th><th></th></th>	<th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>lot</th> <th>HOI</th> <th>VIL</th> <th>HIN</th> <th>Инни</th> <th>RN R</th> <th>Vth 1</th> <th>V_{th}0</th> <th>VCC</th> <th>VCCL</th> <th>VCCH</th> <th></th>										lot	HOI	VIL	HIN	Инни	RN R	Vth 1	V _{th} 0	VCC	VCCL	VCCH	
$ \begin{array}{ $		J		1					MC54121	16	-0.4	0.4	2.4	5.5	4.5	2.0	0.8	5.0	4.5	5.5		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						2			MC74121	16	-0.4	0.4	2.4	5.5	4.5	2.0	0.8	5.0	4.75	5.25		
			Pin	WC	54121 Te	st Limits 25°C	MC	74121 Te 0 to +70	at Limits ^o C			TEST (URRENT	/VOLTAG	E APPLI	ED TO PI	NS LISTE	D BELOW				
	Characteristic	Symbol	Test	Min	Max	Unit	Min	Max	Unit	JOI	HO	VIL	HI A	VIHH	VR.	Vth 1	V _{th} 0	VCC	VCCL	VCCH	Gnd	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Input Forward Current	Ţ	m	Î	-1.6	mAde	1	-1.6	mAdc	. (1	m	ī	()	4	1	- 1	1	1	14	5.7	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			ŝ	í	-3.2	mAdc	Ĩ	-3.2	mAdc	.1	1	ŝ	I	1	3,4	l	I	4	1	14	6.7	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Leakage Current	181	с и и	t.	40	HAdc	1	40	µAdc	T	1	1		I.	1.	1	I	τ	I	14	4,5,7	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			0	1	80	DOAN	1	80	HADC	Î	1	F.	D	y	4'5	ĺ	1	l	1	14	-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		¹ R2	n n	1.1	1.0	mAdc	1.1	1.0	mAdc	1.1	U	13	i i	es 10	3.4	1.1	1.1	8.3	1.1	14	4,5,7	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Output Output Voltage	VOL	9	Ĩ	0.4	Vdc	a.	0.4	Vdc	9	- 1	1.0	1	I	11	1	3,4,5	.)	14	ł	7	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		HON	9	2.4	1	Vdc	2.4	1	Vdc	Ţ	9	1	1	1	1	1	3,4,5	T	14	5	7.11	
Power Requirements Ipo 14 - 25 mAdc - 25 - - 914 33,7 Power Supply Draim Ipo 14 - 25 mAdc - 25 mAdc - 25 - - 914 34,7 Switching Parameters (Cx = 80 pF unloss otherwise 14 - 25 mAdc - - - 914 34,7 Switching Parameters (Cx = 80 pF unloss otherwise 140 04t 04t 04t - 26 3,4 - 914 - - 914 - - 7 7 Uncot(d) 1 - 56# ns 5 1 - - - - - - - 7 7 Uncot(d) Fun- A 5 6 3,4 -	Short-Circuit Current	ISC	- 4	-20	-55	mAdc	-18	-55	mAde	Ť	y.	1.0	1	T	T	C	Ť.	Ĵ.	1	9,14	1,3,4,5,7	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			0	0.7	2	-	01-	00-	200	(1	I	1	l.	1	Ó	C	C	L	141	11,01,1,0,0,4,4,0	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Power Requirements Power Supply Drain	Odj	14 14	11	25	mAdc	1.1	25 40	mAdc	Ţ.1	1.1	1.1	11	n)	1.0	م ا	ا م	1.1	3-1	9,14 9,14	3,4,7 3,4,7	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Switching Parameters									Pulse	Pulse											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(C _X = 80 pF unless otherwise noted.)				ć		1	1														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-Off Delay - A to Q B to Q	+pd1	9 9	1.4	70#	SL DS	1.1	70# 10#	ns	n n	99	3.4	4,5	t i	F 4	1.1	(i	9.14	(-)	00	2	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-On Delay - A to Q	tod-	1	ł	80#	su	1	80#	us	3	-	i	4,5	1	1	1	1	9,14	1	1	7	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B to Q		1	P	65#	su	ł	65#	su	ŝ	-	3,4	1	ı	1	1	1	9,14	į	ł	7	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Output Pulse Witdth With Internal Timing Resistor	PW	5,1	70#	150#	su	70#	150#	su	£	1	t	t	-1	1	1	t	9,14	1	Ţ	3,4,7	
With HX = 10 kt/L CX = 100 PF 000# 800# T 000# 800# T 000# 800# T 000# 800# T 0	with C _X = 0		-	20#	#05	-	20#	20#	-	-	-	1	1	ī	I	1	1	9,14	ī.	1		
Minimum Duration of 1Hold 5,1 - 50# ns 5 1 50# ns 5 1 3,4,7 Tridder Pulse	WITH $X = 10 KM, CX = 100 pt$ R x = 10 kD, Cx = 1.0 μ F	1.00	•	6.0#	8.0#	- sur	600# 6.0#	8.0#	- SE			()	1.1	ī ī	1.1	t I	()	14	i.)	0	•	
	Minimum Duration of Trigger Pulse	Hold	5,1	1	¥05	us.	l.	£0#	su	5	-	1	4	ī	T.	Ĭ	Ì.	9,14	į.	1	3,4,7	

Momentarily ground this pin before taking measurement.
**Pin 10 should be grounded after pin 11.
#Tested only at 25°C.

TEST CIRCUIT AND VOLTAGE WAVEFORMS

APPLICATIONS INFORMATION

Inputs A1 and A2 are negative-edge-triggered and will trigger the monostable multivibrator into the active state when either or both go low while B is high. The B input will trigger the one-shot when B goes high while either A or B is low. Triggering occurs at a particular voltage level and is independent of the input pulse transition time. The Schmitt-trigger capability of the B input can be used to obtain level detection and to process relatively slow leading edges. Jitter-free triggering is obtained with transition times as slow as 1.0 volt/second, providing the circuit with a typical noise immunity of 1.2 volts. Internal latching circuitry provides for a typical noise immunity of 1.5 volts on the V_{CC} line.

During the active state, the outputs are independent of further transitions on the inputs and depend only on the external timing components. With no external timing components and pin 9 connected to V_{CC} (pins 10 and 11 left open), an output pulse of approximately 30 nanoseconds is obtained. An external timing capacitor connected between pins 10 and 11 will extend the pulse width. Accurate repeatable pulse width may be obtained by leaving pin 9 open and connecting an external resistor between pin 11 and V_{CC}. This resistor should be at least 1.4 kilohms and may be as large as 40 kilohms for the MC74121 and 30 kilohms for the MC54121. The timing capacitor may be as large as 1000 μ F. Within these limits, the output pulse width is given by:

 $PW = C_X R_X \log_e 2.$

