## WIDEBAND DC AMPLIFIER

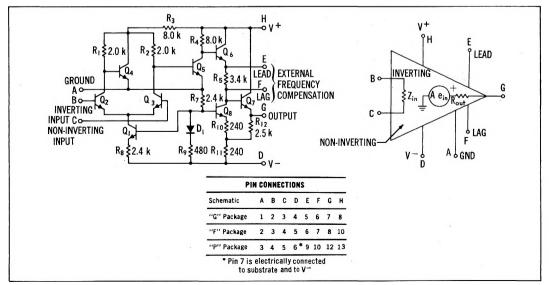
# MC1712C

. . . designed for use as an operational amplifier utilizing operating characteristics as a function of the external feedback components.

#### Lead 4 connected to case CASE 96 (TO-99) "G" SUFFIX CASE 72 (TO-91) "F" SUFFIX CASE 93 (TO-116) "P" SUFFIX

### **Typical Amplifier Features:**

- Open Loop Gain A<sub>VOL</sub> = 3400 typical
- Low Temperature Drift  $\pm 5.0 \,\mu V/^{O}C$
- Output Voltage Swing ±5.3 V typical @ +12 V and -6.0 V Supplies
- Low Output Impedance Z<sub>out</sub> = 200 ohms typical


#### MAXIMUM RATINGS (T<sub>A</sub> = 25°C unless otherwise noted)

| Rating                                                                                                                                                | Symbol                   | Value                                  | Unit                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------|-------------------------------------------|
| Power Supply Voltage<br>(Total between V <sup>+</sup> and V <sup>-</sup> terminals)                                                                   | <b>v</b> + +  <b>v</b> - | 21                                     | Vdc                                       |
| Differential Input Signal                                                                                                                             | V <sub>in</sub>          | ±5.0                                   | Volts                                     |
| Common Mode Input Swing                                                                                                                               | CMV <sub>in</sub>        | +1.5<br>-6.0                           | Volts                                     |
| Peak Load Current                                                                                                                                     | 1L                       | 50                                     | mA                                        |
| Power Dissipation (Package Limitation)<br>Metal Can<br>Derate above 25°C<br>Flat Package<br>Derate above 25°C<br>Plastic Package<br>Derate above 25°C | PD                       | 680<br>4.6<br>500<br>3.3<br>400<br>3.3 | mW<br>mW/°C<br>mW<br>mW/°C<br>mW<br>mW/°C |
| Operating Temperature Range*                                                                                                                          | TA                       | 0 to +75                               | °C                                        |
| Storage Temperature Range<br>Metal Can and Flat Package<br>Plastic Package                                                                            | T <sub>stg</sub>         | -65 to +150<br>-55 to +125             | °C                                        |

 For full temperature range (-55°C to +125°C) and characteristic curves, see MC1712 data sheet.

## **CIRCUIT SCHEMATIC**

### EQUIVALENT CIRCUIT



## **OPERATIONAL AMPLIFIERS**

| Characteristic Definitions ①                                                                                   | Characteristic                                                                                                                                                                                                                            | Symbol                 | Min          | Тур          | Max  | Unit              |
|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------|--------------|------|-------------------|
|                                                                                                                | Open Loop Voltage Gain $R_L = 100 \text{ k}\Omega$                                                                                                                                                                                        | AVOL                   |              |              |      | v/v               |
|                                                                                                                | $(V^+ = 6.0 \text{ Vdc}, V^- = -3.0 \text{ Vdc},$                                                                                                                                                                                         |                        | 500          | 800          | 1500 |                   |
| $A_{VOL} = \frac{e_{out}}{e_{out}}$                                                                            | $V_{out} = \pm 2.5 V$ )<br>(V <sup>+</sup> = 12 Vdc, V <sup>-</sup> = -6.0 Vdc,                                                                                                                                                           |                        | 500          | 000          | 1300 |                   |
| ea                                                                                                             | (V' = 12 V dc, V' = -6.0 V dc, V' = +5.0 V)                                                                                                                                                                                               |                        | 2000         | 3400         | 6000 |                   |
|                                                                                                                | $V_{out} = \pm 5.0 \text{ V}$<br>(V <sup>+</sup> = 12 Vdc, V <sup>-</sup> = -6.0 Vdc,                                                                                                                                                     |                        |              | 0.00         | 0000 |                   |
| C Zet                                                                                                          | $V_{out} = \pm 5.0 \text{ Vdc}, T_A = 0, +75^{\circ}\text{C}$                                                                                                                                                                             |                        | 1 500        |              | 7000 |                   |
|                                                                                                                | $ \begin{array}{l} (V = 12 \text{ vac}, V = -3.0 \text{ vac}, T_{A} = 0, +75^{\circ}\text{C}) \\ (V^{*} = 6.0 \text{ vac}, V^{-} = -3.0 \text{ vac}, \\ V_{\text{out}} = \pm 2.5 \text{ V}, T_{A} = 0, +75^{\circ}\text{C}) \end{array} $ |                        | 400          | -            | 1750 |                   |
|                                                                                                                | Output Impedance                                                                                                                                                                                                                          | Zout                   | 100          |              | 1100 | ohms              |
| B e <sub>cut</sub>                                                                                             | Output Impedance<br>$(V^+ = 6.0 \text{ Vdc}, V^- = -3.0 \text{ Vdc}, f = 20 \text{ Hz})$<br>$(V^+ = 12 \text{ Vdc}, V^- = -6.0 \text{ Vdc}, f = 20 \text{ Hz})$                                                                           | out                    | -            | 300          | 800  |                   |
|                                                                                                                | $(V^+ = 12 \text{ Vdc}, V^- = -6.0 \text{ Vdc}, I = 20 \text{ Hz})$<br>Input Impedance                                                                                                                                                    | 7                      | -            | 200          | 600  | k ohn             |
|                                                                                                                | (V <sup>+</sup> = 6.0 Vdc, V <sup>-</sup> = -3.0 Vdc, f = 20 Hz)                                                                                                                                                                          | Zin                    | 16           | 55           | -    |                   |
|                                                                                                                | $(V^+ = 12 \text{ Vdc}, V^- = -6.0 \text{ Vdc}, f = 20 \text{ Hz})$                                                                                                                                                                       |                        | 10           | 32           | -    |                   |
|                                                                                                                | Output Voltage Swing                                                                                                                                                                                                                      | vout                   |              |              |      | v <sub>peal</sub> |
| °                                                                                                              | $(V^+ = 6.0 \text{ Vdc}, V^- = -3.0 \text{ Vdc}, R_L = 100 \text{ k}\Omega)$<br>$(V^+ = 12 \text{ Vdc}, V^- = -6.0 \text{ Vdc}, R_L = 100 \text{ k}\Omega)$                                                                               | out                    | ±2.5<br>±5.0 | ±2.7<br>±5.3 | -    | peu               |
| $\bigcirc$                                                                                                     | $(V = 12 V dc, V = -0.0 V dc, R_{L} = 100 K\Omega)$                                                                                                                                                                                       |                        | 10.0         | 10.5         | -    |                   |
|                                                                                                                | $(V^{+} = +6.0 \text{ Vdc}, V^{-} = -3.0 \text{ Vdc}, R_{L} = 10 \text{ k}\Omega)$                                                                                                                                                        |                        | ± 1.5        | ± 2.0        | -    |                   |
|                                                                                                                | $(V' = +12 Vdc, V' = -6.0 Vdc, R_L = 10 k\Omega)$                                                                                                                                                                                         |                        | ± 3.5        | ± 4.0        | -    |                   |
|                                                                                                                |                                                                                                                                                                                                                                           | 0101                   | 10.0         | 1 1.0        |      |                   |
| O C N                                                                                                          | Input Common Mode Voltage Swing<br>$(V^+ = 6.0 \text{ Vdc}, V^- = -3.0 \text{ Vdc})$                                                                                                                                                      | CMVin                  | +0.5         |              | -    | V pea             |
|                                                                                                                |                                                                                                                                                                                                                                           |                        | -1.5         | -            | -    |                   |
|                                                                                                                | $(V^+ = 12 Vdc, V^- = -6.0 Vdc)$                                                                                                                                                                                                          |                        | +0.5         | 1            | - 1  |                   |
| $= G \qquad G \qquad A_{VCM} = \frac{e_{out}}{e_{in}}$                                                         | Common Mode Rejection Ratio                                                                                                                                                                                                               | CM <sub>rej</sub>      |              |              |      | dB                |
| B<br>CM <sub>rej</sub> = AvcM -Avol                                                                            | $(V^+ = 6.0 \text{ Vdc}, V^- = -3.0 \text{ Vdc}, f \le 1.0 \text{ kHz})$<br>$(V^+ = 12 \text{ Vdc}, V^- = -6.0 \text{ Vdc}, f \le 1.0 \text{ kHz})$                                                                                       | rej                    | 70           | 95<br>95     | -    |                   |
| and a second | Input Bias Current                                                                                                                                                                                                                        | ц                      | 70           | 55           | -    | μA                |
|                                                                                                                | $T_A = 25^{\circ}C$                                                                                                                                                                                                                       | b .                    |              |              |      |                   |
|                                                                                                                | $I_{h} = \frac{I_{1} + I_{2}}{2},  (V^{+} = 6.0 \text{ Vdc}, V^{-} = -3.0 \text{ Vdc}) \\ (V^{+} = 12 \text{ Vdc}, V^{-} = -6.0 \text{ Vdc}) \\ = 0.00 \text{ Vdc} $                                                                      |                        | -            | 1.5          | 5.0  |                   |
|                                                                                                                | $I_{b} = \frac{1 + 2}{2},  (V^{+} = 12 \text{ Vdc}, V^{-} = -6.0 \text{ Vdc}) \\ T_{A} = 0^{\circ}\text{C to } +75^{\circ}\text{C})$                                                                                                      |                        | -            | 2.5          | 7.5  |                   |
|                                                                                                                | $V^+ = 6.0 \text{ Vdc}, V^- = -3.0 \text{ Vdc}$                                                                                                                                                                                           |                        |              | 2.5          | 8.0  |                   |
| 8 -                                                                                                            | $(V^+ = 12 Vdc, V^- = -6, 0 Vdc)$                                                                                                                                                                                                         |                        | -            | 4.0          | 12   |                   |
|                                                                                                                | $T_{A} = 0^{\circ}C \text{ to } +75^{\circ}C)$                                                                                                                                                                                            |                        |              |              |      |                   |
| <u></u>                                                                                                        | Input Offset Current (I <sub>i0</sub> = I <sub>1</sub> - I <sub>2</sub> )                                                                                                                                                                 | I <sub>io</sub>        |              |              |      | μA                |
|                                                                                                                | $(V^+ = 6, 0 \text{ Vdc}, V^- = -3, 0 \text{ Vdc})$                                                                                                                                                                                       | 10                     | -            | 0.3          | 2.0  |                   |
|                                                                                                                | $(V^+ = 6.0 \text{ Vdc}, V^- = -3.0 \text{ Vdc}, T =$                                                                                                                                                                                     |                        |              |              |      |                   |
| G                                                                                                              | $0^{\circ}C \text{ to } +75^{\circ}C)$<br>(V <sup>+</sup> = 12 Vdc, V <sup>-</sup> = -6.0 Vdc)                                                                                                                                            |                        | -            | 0.5          | 2.5  |                   |
| I O B                                                                                                          | $(V^+ = 12 \text{ Vdc}, V^- = -6.0 \text{ Vdc})$<br>$(V^+ = 12 \text{ Vdc}, V^- = -6.0 \text{ Vdc}, T_A = 0^\circ \text{C to } +75^\circ \text{C})$                                                                                       |                        |              |              | 2.5  |                   |
|                                                                                                                | $\frac{0^{\circ}C \text{ to } +75^{\circ}C)}{\text{Input Offset Voltage}} = R_{S} = 2.0 \text{ k}\Omega$                                                                                                                                  | v                      | -            |              | 2.5  | mV                |
| e c                                                                                                            |                                                                                                                                                                                                                                           | v <sub>io</sub>        |              | 1.7          | 6.0  |                   |
|                                                                                                                | $(V^+ = 6.0 \text{ Vdc}, V^- = -3.0 \text{ Vdc}, T_A =$                                                                                                                                                                                   |                        |              |              |      |                   |
| Vie                                                                                                            |                                                                                                                                                                                                                                           |                        | -            |              | 7.5  |                   |
| $=$ B $V_{ext} = 0$                                                                                            | $(V^+ = 12 \text{ Vdc}, V^- = -6.0 \text{ Vdc})$<br>$(V^+ = 12 \text{ Vdc}, V^- = -6.0 \text{ Vdc}, T =$                                                                                                                                  |                        | -            | 1.5          | 5.0  |                   |
| = B V <sub>out</sub> = 0                                                                                       | $(V^+ = 12 \text{ Vdc}, V^- = -6.0 \text{ Vdc})$<br>$(V^+ = 12 \text{ Vdc}, V^- = -6.0 \text{ Vdc}, T_A = 0^{\circ}\text{C to } +75^{\circ}\text{C})$                                                                                     |                        | -            | -            | 6.5  |                   |
| · /                                                                                                            | Step Response<br>$V^+ = 12$ Vdc, $V^- = -6.0$ Vdc                                                                                                                                                                                         | v <sub>os</sub>        |              | 20           | 40   | 70                |
|                                                                                                                | $Gain = 100, V_{in} = 1.0 \text{ mV},$                                                                                                                                                                                                    | <sup>t</sup> f         | -            | 10           | 30   | ns                |
| G                                                                                                              | $R_1 = 1.0 \ k\Omega, R_2 = 100 \ k\Omega,$                                                                                                                                                                                               | t <sub>pd</sub>        | -            | 10           | -    | ns                |
|                                                                                                                | $\begin{pmatrix} 1 & 2 \\ C_2 = 50 \text{ pF}, R_3 = \infty, C_1 = \text{open} \end{pmatrix}$                                                                                                                                             | dV <sub>out</sub> /dt2 | -            | 12           | -    | V/µs              |
|                                                                                                                | $(V^+ = 12 Vdc, V^- = -6.0 Vdc)$                                                                                                                                                                                                          | v                      | -            | 10           | 50   | es.               |
| 90% EQ                                                                                                         | Gain = 1.0, $V_{in} = 10 \text{ mV}$ ,                                                                                                                                                                                                    | t os<br>f              | -            | 25           | 120  | ns                |
|                                                                                                                | $R_1 = 10 \ k\Omega, R_2 = 10 \ k\Omega,$                                                                                                                                                                                                 | rpd                    | -            | 16           | -    | ns                |
| W RATE $C_1$ $C_2$ $C_1 \leq 100 \text{ k}$                                                                    | $(C_1 = 0.01 \ \mu F, R_3 = 20\Omega, C_2 = open)$                                                                                                                                                                                        | dV out /dt 2           | -            | 1.5          | -    | $V/\mu s$         |
|                                                                                                                |                                                                                                                                                                                                                                           |                        |              |              |      | μ <b>V</b> /°     |
|                                                                                                                | Average Temperature Coefficient of<br>Input Offset Voltage $R_S = 50 \Omega$                                                                                                                                                              | TC <sub>Vio</sub>      |              |              |      | μ•/               |
| 880 A.                                                                                                         | $(T_{A} = 0, +75^{\circ}C)$                                                                                                                                                                                                               |                        | -            | 5.0          | -    |                   |
|                                                                                                                |                                                                                                                                                                                                                                           |                        |              |              |      |                   |
| 1                                                                                                              | Average Temperature Coefficient<br>Input Offset Current                                                                                                                                                                                   | TC <sub>Iio</sub>      |              |              |      | nA/°              |
|                                                                                                                | $(T_A = +25^{\circ}C \text{ to } +75^{\circ}C)$                                                                                                                                                                                           |                        | -            | 4.0          | -    |                   |
|                                                                                                                | $(\mathbf{T}_{\mathbf{A}}^{\mathbf{A}} = 0 \text{ to } +25^{\circ}\text{C})$                                                                                                                                                              |                        | -            | 6.0          | -    |                   |
|                                                                                                                | DC Power Dissipation                                                                                                                                                                                                                      | P <sub>D</sub>         |              |              |      | mW                |
|                                                                                                                | $(V_{-} = 0, V^{+} = 6, 0 Vdc, V^{-} = -3, 0 Vdc)$                                                                                                                                                                                        | D                      | -            | 17           | 30   |                   |
|                                                                                                                | $(V_{out} = 0, V^+ = 12 Vdc, V^- = -6.0 Vdc)$                                                                                                                                                                                             |                        | -            | 70           | 120  |                   |
|                                                                                                                |                                                                                                                                                                                                                                           | S+                     |              |              |      | $\mu V/V$         |
|                                                                                                                | Positive Supply Sensitivity                                                                                                                                                                                                               | 5"                     |              |              |      |                   |
| $C = E Q^{V+} SENSITIVITY = S$                                                                                 | Positive Supply Sensitivity<br>(V <sup>-</sup> constant = -6.0 Vdc,                                                                                                                                                                       | 5*                     | -            | 60           | 300  |                   |
| $C \qquad E Q^{V+} \qquad SENSITIVITY = S \\ G \qquad V_{even}$                                                | Positive Supply Sensitivity<br>$(V^- \text{ constant } = -6.0 \text{ Vdc},$<br>$V^+ = 12 \text{ Vdc to } 6.0 \text{ Vdc})$<br>Negative Supply Sensitivity                                                                                 | S*<br>S*               | -            | 60<br>60     | 300  | μV/V              |

ELECTRICAL CHARACTERISTICS ( $T_A = 25^{\circ}C$  unless otherwise noted

All definitions imply linear operation.
dV<sub>out</sub>/dt = Slew Rate