DUAL DIFFERENTIAL COMPARATOR

SENSE AMPLIFIERS

MC1711C

... designed for use in level detection, low level sensing, and memory applications.

Typical Amplifier Features:

- Differential Input Input Offset Voltage = 1.0 mV Offset Voltage Drift = 5.0 μV/^OC
- Fast Response Time 40 ns
- Output Compatible with All Saturating Logic Forms
 V_{out} = +4.5 V to -0.5 V typical
- Low Output Impedance − 200 ohms

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit	
Power Supply Voltage	V+ V-	+14 -7. 0	Vdc Vdc	
Differential Input Signal	v _{in}	±5.0	Volts	
Common Mode Input Swing	CMV _{in}	±7.0	Volts	
Peak Load Current	I _L	50	m.A	
Power Dissipation (package limitation) Metal Can Derate above T _A = 25° C	P _D	680 4. 6	mW mW/°C	
Flat Package Derate above T _A = 25°C		500 3.3	mW mW/°C	
Plastic Package Derate above TA = 25°C		400 3. 3	mW mW/°C	
Operating Temperature Range	T _A	0 to +75	°C	
Storage Temperature Range Metal Can and Flat Package Plastic Package	T _{stg}	-65 to +150 -65 to. +125	°C	

CIRCUIT SCHEMATIC

EQUIVALENT CIRCUIT

MC1711C (continued)

ELECTRICAL CHARACTERISTICS (each comparator) V⁺ = +12 Vdc. V⁻ = -6.0 Vdc. T_A = 25°C unless otherwise noted)

Characteristic Definitions	Characteristic	Symbol	Min	Тур	Max	Unit
Re N	Input Offset Voltage CMV _{in} = 0 Vdc, T _A = +25°C	v _{io}		1.0	5.0	mVdc
o-w	$CMV_{in} \neq 0 \text{ Vdc}, T_A = +25^{\circ}C$		-	1.0	7.5	
V _{io} V _{out}	$CMV_{in} = 0 \text{ Vdc}, T_A = 0 \text{ to } +70^{\circ}\text{C}$		-		6.0	
RS	$CMV_{in} \neq 0 \text{ Vdc}, T_A = 0 \text{ to } +70^{\circ}\text{C}$		-	_	10	
+ V _{out} = 1.4 Vdc @ 25° C			•			-
V _{out} = 1.5 Vdc @ 0°C V _{out} = 1.5 Vdc @ 0°C V _{out} = 1.2 Vdc @ +70°C	Temperature Coefficient of Input Offset Voltage	TCVio	-	5.0	-	μV/°C
	Input Offset Current Vout = 1.4 Vdc, TA = +25°C	I _{io}	_	0.5	15	μAdc
	$V_{\text{out}} = 1.5 \text{ Vdc}, T_{\text{A}} = 0^{\circ} \text{C}$		_	-	25	
	V _{out} = 1.2 Vdc, T _A = +70°C		-	-	25	
V _{out}	Input Bias Current	I _b				μAdc
+ I _{i0} = I ₁ - I ₂	$V_{\text{out}} = 1.4 \text{ Vdc}, T_{\text{A}} = +25^{\circ}\text{C}$	*b	-	25	100	, mrauc
12 11+12	$V_{\text{out}} = 1.5 \text{ Vde}, T_{A} = 0^{\circ} \text{C}$		-	-	150	
l _b = - 2	$V_{out} = 1.2 \text{ Vdc}, T_A = +70^{\circ} \text{ C}$		-	-	150	
$A_{VOL} = \frac{e_{out}}{e_{in}}$	Voltage Gain	A _{VOL}				v/v
	$T_{\Delta} = +25^{\circ} C$	VOL	700	1500		
e _{in} e _{out}	$T_{A}^{A} = -55 \text{ to } +125^{\circ} \text{ C}$		500	= 1	-	
	Output Resistance	Rout	-	200	-	ohms
	Differential Voltage Range	v _{in}	±5.0	-	-	Vdc
	Positive Output Voltage V _{in} ≥ 10 mVdc, 0 ≤ I _o ≤ 0.5 mA	v _{OH}	2.5	3.2	5.0	Vdc
v _{in}	Negative Output Voltage V _{in} ≧ -10 mVdc	v _{OL}	-1.0	-0.5	0	Vdc
+ 10	Strobed Output Level V _{strobe} ≤ 0.3 Vdc	V _{OL(st)}	-1.0	-	0	Vdc
	Output Sink Current $V_{in} \ge -10 \text{ mV}, V_{out} \ge 0$	I _S	0.5	0.8	_	mAdc
	Strobe Current					
	V _{strobe} = 100 mVdc	Ist	•	1.2	2.5	mAde
V _{in}	Input Common Mode Range V = -7.0 Vdc	CM _{Vin}	±5.0	-	-	Volts
± e _{in} − 100m\	v					
0V V _b e _{in} 1.4V e _{out} 3.0 V	Response Time V _b = 5.0 mV + V _{io}	t _R	-	40	-	ns
estrobe t SR equit	Strobe Release Time	t _{SR}	-	12	-	ns
V _{in} O V [†] I _D [†]	Power Supply Current Vout ≤ 0 Vdc	ID+	-	8.6	-	mAdc
	out	I _D -	-	3.9	-	
+ V- 11p-	Power Consumption		-	130	200	mW

TYPICAL CHARACTERISTICS

MC1711C (continued)

FIGURE 7 - COMMON MODE PULSE RESPONSE

FIGURE 8 - OUTPUT PULSE STRETCHING WITH CAPACITIVE LOADING

FIGURE 9 – SERIES RESISTANCE versus MRTL FAN-OUTS

FIGURE 10 - FAN-OUT CAPABILITY WITH MDTL OR MTTL OUTPUT SWING

