OPERATIONAL AMPLIFIER ### **OPERATIONAL AMPLIFIERS** ### MC1709C . . . designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components. #### **Typical Amplifier Features:** - High-Performance Open Loop Gain Characteristics AVOL = 45,000 typical - Low Temperature Drift ±3.0 μV/°C - Large Output Voltage Swing – ±14 V typical @ ±15 V Supply - Low Output Impedance Z_{out} = 150 ohms typical | PIN CONNECTIONS | | | | | | | | | |-----------------|---|---|---|----|---|----|----|----| | Schematic | Α | В | С | D | Ε | F | G | Н | | "G" Package | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | | "F" Package | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | "P" Package | 3 | 4 | 5 | 6* | 9 | 10 | 11 | 12 | ^{*}Pin 7 is electrically connected to substrate and V #### MAXIMUM RATINGS (T_A = 25°C unless otherwise noted) | Rating | Symbol | Value | Unit | |--|------------------|--|---| | Power Supply Voltage | v*
v- | +18
-18 | Vdc
Vdc | | Differential Input Signal | v _{in} | ±5.0 | Volts | | Common Mode Input Swing | CMV | ±V ⁺ | Volts | | Load Current | ľL | 10 | mA | | Output Short Circuit Duration | t _s | 5.0 | s | | Power Dissipation (Package Limitation) Metal Can Derate above 25° C Flat Package Derate above 25° C Plastic Package Derate above 25° C | P _D | 680
4.6
500
3.3
400
3.3 | mW
mw/°C
mW
mW/°C
mW
mW/°C | | Operating Temperature Range* | T _A | 0 to +75 | °C | | Storage Temperature Range
Metal Can and Flat Package
Plastic Package | T _{stg} | -65 to +150
-65 to +125 | °c | For full temperature range (-55°C to +125°C) and characteristic curves, see MC1709 data sheet. #### CIRCUIT SCHEMATIC ### **EQUIVALENT CIRCUIT** ELECTRICAL CHARACTERISTICS (V· = +15 Vdc, V- = -15 Vdc, TA = 25°C unless otherwise noted) | Characteristic Definitions (linear operation) Characteristic | | Symbol | Min | Тур | Max | Unit | | |--|--|--------------------------------|--------------|-------------------|--------------|-------------------|--| | A _{VOL} = $\frac{e_{out}}{e_{in}}$ | Open Loop Voltage Gain $(R_L=2 \text{ k}\Omega, V_{out}=\pm 10 \text{ V}, T_A=0 ^{\circ}\text{C to } +75 ^{\circ}\text{C})$ | Avol | 15,000 | 45,000 | - | - | | | e _{in} Z _{in} Z _{in} F e _{out} | Output Impedance
(f = 20 Hz) | Zout | | 150 | - | Ω | | | * * | Input Impedance
(f = 20 Hz) | z _{in} | 50 | 250 | - | kΩ | | | - B | Output Voltage Swing (R _L = 10 kΩ) (R _L = 2 kΩ) | Vout | ±12
±10 | ±14
±13 | 7 | v _{peak} | | | e _{in} B | Input Common Mode Voltage Swing | CMVin | ±8.0 | ±10 | - | V _{peak} | | | $= \frac{1}{e_{in}} + 8 \text{ V} \qquad C \qquad F \qquad \frac{e_{out}}{e_{in}}$ $= A_{VCM} - A_{VOL}$ | Common Mode Rejection Ratio | CM _{rej} | 65 | 90 | - | dB | | | l ₂ o B F | Input Bias Current $\left(I_{b} = \frac{I_{1} + I_{2}}{2}\right) \cdot \left(T_{A} = +25^{\circ}C\right)$ $\left(T_{A} = 0^{\circ}C\right)$ | I,b | ₇ | 0.3 | 1.5
2.0 | μА | | | 120-B | Input Offset Current (I _{io} = I ₁ - I ₂) | I _{io} | - | 0.1 | 0.5 | μА | | | 1,0 C | $(I_{io} = I_1 - I_2, T_A = 0 ^{\circ}C)$
$(I_{io} = I_1 - I_2, T_A = +75 ^{\circ}C)$ | | - | - | 0.75
0.75 | | | | V _{io} B F V _{ort} = 0 | Input Offset Voltage (T _A = 25°C) (T _A = 0°C,+75°C) | v _{io} | | 2.0 | 7.5
10 | mV | | | e _{in} 50% - R ₂ R ₃ R ₃ | Step Response
Gain = 100, 5% overshoot,
$R_1 = 1 \text{ k}\Omega$, $R_2 = 100 \text{ k}\Omega$,
$R_3 = 1.5 \text{ k}\Omega$, $C_1 = 100 \text{ pF}$, $C_2 = 3 \text{ pF}$ | tf tpd dV _{out} /dt ① | - | 0.8
0.38
12 | - | μs
μs
V/μs | | | 10% 400 mV R ₁ C ₁ A H | (Gain = 10, 10% overshoot, | t _f | | 0.6 | - | μв | | | 90% B OVERSHOOT CO | $\begin{cases} R_1 = 1 \text{ k}\Omega, R_2 = 10 \text{ k}\Omega, \\ R_3 = 1.5 \text{ k}\Omega, C_1 = 500 \text{ pF}, C_2 = 20 \text{ pF} \end{cases}$ | dV _{out} /dt ① | - | 0.34
1.7 | - | μs
V/μs | | | SLEW RATE | (Gain = 1, 5% overshoot, | t _f | - | 2,2 | - | μѕ | | | | $\begin{cases} R_1 = 10 \text{ k}\Omega, R_2 = 10 \text{ k}\Omega, \\ R_3 = 1.5 \text{ k}\Omega, C_1 = 5000 \text{ pF}, C_2 = 200 \text{ pF} \end{cases}$ | dV _{out} /dt ① | - | 1.3
0.25 | - | μs
V/μs | | | | Average Temperature Coefficient of Input Offset Voltage (R _S = 50 Ω, T _A = 0 °C to +75 °C) | TCVio | - | 3.0 | _ | μV/°C | | | | $(R_S \le 10 \text{ k}\Omega, T_A = 0 \text{ °C to } +75 \text{ °C})$ DC Power Dissipation | P _D | - | 6.0 | - | mW | | | $B \sim G^{V^+}$ Sensitivity = S | (Power Supply = ±15 V, V _{out} = 0) Positive Supply Sensitivity | s ⁺ | - | 80 | 200 | μV/V | | | F Vout | (V constant) Negative Supply Sensitivity | | - | 25 | 200 | μV/V | | | $S = \frac{\triangle V_{out}}{\triangle V_{s}(A_{VOL})}$ | (V ⁺ constant) | s | - | 25 | 200 | μν/ν | | ¹ dV_{out}/dt = Slew Rate ### WIDEBAND DC AMPLIFIER #### **OPERATIONAL AMPLIFIERS** ### MC1712 ... designed for use as an operational amplifier utilizing operating characteristics as a function of the external feedback components. #### Typical Amplifier Features: - Open Loop Gain AVOL = 3600 typical - Low Temperature Drift ±2.5 μV/^OC - Output Swing ±5.3 V typical @ +12 V and -6.0 V Supplies - Low Output Impedance – Z_{out} = 200 ohms typical #### MAXIMUM RATINGS (T_A = 25°C unless otherwise noted) | Rating | Symbol | Value | Unit | |---|-------------------|----------------------------|------------------------------| | Power Supply Voltage
(Total between V ⁺ and V ⁻ terminals) | v+ + v- | 21 | Vdc | | Differential Input Signal | v _{in} | ±5.0 | Volts | | Common Mode Input Swing | CMV _{in} | +1.5
-6.0 | Volts | | Peak Load Current | I _L | 50 | mA | | Power Dissipation (Package Limitation) Metal Can Derate above T _A = 25°C Flat Package Derate above T _A = 25°C | P _D | 680
4. 6
500
3. 3 | mW
mW/° C
mW
mW/° C | | Operating Temperature Range | T _A | -55 to +125 | °C | | Storage Temperature Range | T _{stg} | -65 to +150 | °c | | PIN CONNECTIONS | | | | | | | | | |-----------------|---|---|---|---|---|---|---|----| | Schematic | А | 8 | С | D | Ε | F | G | Н | | "G" Package | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | | "F" Package | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 10 | ### **CIRCUIT SCHEMATIC** ## **EQUIVALENT CIRCUIT** # MC1712 (continued) | Characteristic Definitions ① | Characteristic | Symbol | Min | Тур | Max | Unit | | |--|--|------------------------|-------|----------|-----------|-----------------|--| | | Open Loop Voltage Gain R _L = 100 kΩ | A _{VOL} | | | | V/V | | | | $(V^+ = 6.0 \text{ Vdc}, V^- = -3.0 \text{ Vdc},$ | | 600 | 900 | 1500 | | | | | $(V_{\text{out}} = \pm 2.5 \text{ V})$
$(V^{+} = 12 \text{ Vdc}, V^{-} = -6.0 \text{ Vdc},$ | | | | | | | | Avol = $\frac{e_{out}}{e_{t-}}$ | V _{out} = ± 5.0 V) | | 2500 | 3600 | 6000 | | | | e _{in} | $(V^{T} = 12 \text{ Vdc}, V^{T} = -6.0 \text{ Vdc},$ | | 2000 | | 7000 | | | | | $V_{\text{out}} = \pm 5.0 \text{ Vdc}, T_{\text{A}} = -55, +125^{\circ}\text{C}$
$(V^{+} = 6.0 \text{ Vdc}, V^{-} = -3.0 \text{ Vdc},$ | | 2000 | 1 | 1000 | | | | Zout | V _{out} = ± 2.5 V, T _A = -55 to +125°C) | 7 | 500 | | 1750 | | | | 6. | Output Impedance
(V+ = 6.0 Vdc, V- = -3.0 Vdc, f = 20 Hz) | Zout | | 300 | 700 | ohms | | | Z _{in} G | (V+ = 12 Vdc, V- = -6.0 Vdc, f = 20 Hz) Input Impedance | 7 | - | 200 | 500 | k ohi | | | B e _{out} | $(V^+ = 6.0 \text{ Vdc}, V^- = -3.0 \text{ Vdc}, f = 20 \text{ Hz})$ | z _{in} | 22 | 70 | - | K O. | | | ÷ ÷ | $(V^{+} = 6.0 \text{ Vdc}, V^{-} = -3.0 \text{ Vdc}, f = 20 \text{ Hz},$
$T_{A} = -55^{\circ}\text{C}, +125^{\circ}\text{C})$ | | 8.0 | - | - | | | | | $(V^+ = 12 \text{ Vdc}, V^- = -6.0 \text{ Vdc}, f = 20 \text{ Hz})$ | | 16 | 40 | - | | | | | $(V^{+} = 12 \text{ Vdc. } V^{-} = -6.0 \text{ Vdc. } f = 20 \text{ Hz.}$ | | 6.0 | _ | | | | | | T _A = -55°C, +125°C) Output Voltage Swing | v | 0.0 | - | | v | | | C | $(V^{+} = 6.0 \text{ Vdc}, V^{-} = -3.0 \text{ Vdc}, R_{L} = 100 \text{ k}\Omega)$
$(V^{+} = 12 \text{ Vdc}, V^{-} = -6.0 \text{ Vdc}, R_{L} = 100 \text{ k}\Omega)$ | out | ±2.5 | ±2.7 | - | pea | | | | $(V^{+} = 12 \text{ Vdc}, V^{-} = -6.0 \text{ Vdc}, R_{L} = 100 \text{ k}\Omega)$ | | ±5.0 | ±5.3 | - | | | | GOV | $(V^{+} = +6.0 \text{ Vdc}, V^{-} = -3.0 \text{ Vdc}, R_{L} = 10 \text{ k}\Omega)$ | | ± 1.5 | ± 2.0 | | | | | ± B | $(V^+ = +12 \text{ Vdc}, V^- = -6.0 \text{ Vdc}, R_T = 10 \text{ k}\Omega)$ | | ± 3.5 | ± 4.0 | | | | | | Input Common Mode Voltage Swing | CMV | | | | V _{pe} | | | e _{in} C | $(V^+ = 6.0 \text{ Vdc}, V^- = -3.0 \text{ Vdc})$ | ın | +0.5 | - | : | pea | | | 0 | $(V^+ = 12 \text{ Vdc}, V^- = -6.0 \text{ Vdc})$ | | +0.5 | - | - | | | | G Gent | Common Mode Rejection Ratio | CM _{rej} | -4.0 | | - | dB | | | $A_{VCM} = \frac{e_{out}}{e_{in}}$ $CM_{i*j} = A_{VCM} - A_{VOL}$ | $(V^+ = 6.0 \text{ Vdc}, V^- = -3.0 \text{ Vdc}, f \le 1.0 \text{ kHz})$
$(V^+ = 12 \text{ Vdc}, V^- = -6.0 \text{ Vdc}, f \le 1.0 \text{ kHz})$ | rej | 80 | 100 | - | | | | | Input Bias Current | I _b | 80 | 100 | - | μA | | | 12 O C | T _A = 25° C | U | | | | , | | | | $I_{b} = \frac{I_{1} + I_{2}}{2}, (V^{+} = 6.0 \text{ Vdc}, V^{-} = -3.0 \text{ Vdc})$ $I_{b} = \frac{I_{1} + I_{2}}{2}, (V^{+} = 12 \text{ Vdc}, V^{-} = -6.0 \text{ Vdc})$ $T_{A} = -55^{\circ} \text{ C}$ | | | 1.2 | 3.5 | | | | G | $I_b = \frac{1}{2}$, $T_A = -55^{\circ}C$ | | | | | | | | II B | $(V^+ = 6.0 \text{ Vdc}, V^- = -3.0 \text{ Vdc})$ | | - | 2.5 | 7.5 | | | | | $(V^+ = 12 \text{ Vdc}, V^- = -6.0 \text{ Vdc})$
Input Offset Current $(I_{io} = I_1 - I_2)$ | I _{io} | - | 4.0 | 10 | μΑ | | | 12 0 | (VI + - C O VIde VI 2 O VIde) | 10 | - | 0.1 | 0.5 | | | | | (V = 6.0 Vdc, V = -3.0 Vdc, T _A = -55 to +125°C) | | | | 1.5 | | | | G G | (V+ - 12 Vdc V 6 0 Vdc) | | - | 0.2 | 0.5 | | | | В | (V = 12 Vdc, V = -6.0 Vdc, T _A = -55 to +125°C) | | | - | 1.5 | | | | · c / | Input Offset Voltage R _S = 2.0 kΩ | v _{io} | | | | mV | | | | $(V^+ = 6.0 \text{ Vdc}, V^- = -3.0 \text{ Vdc})$
$(V^+ = 6.0 \text{ Vdc}, V^- = -3.0 \text{ Vdc}, T_A =$ | | - | 1.3 | 3.0 | | | | V _{ie} G | -55°C, +125°C) | | - | | 4.0 | | | | | $(V^{+} = 12 \text{ Vdc}, V^{-} = -6.0 \text{ Vdc})$
$(V^{+} = 12 \text{ Vdc}, V^{-} = -6.0 \text{ Vdc}, T_{A} = -6.0 \text{ Vdc}$ | | - | 1.1 | 2.0 | | | | ± B V _{ovt} = 0 | -55°C, +125°C) | | - | - | 3.0 | | | | 60% R ₁ C R ₂ | Step Response V + = 12 Vdc, V - = -6.0 Vdc | v _{os} | - | 20 | 40 | % | | | 1 0-1 | Gain = 100, V _{in} = 1.0 mV, | t _f | - | 10 | 30 | ns | | | G G | $R_1 = 1.0 \text{ k}\Omega, R_2 = 100 \text{ k}\Omega,$ | t _{pd} | - | 10 | - | ns | | | % B O R € C | $\begin{pmatrix} C_2 = 50 \text{ pF}, R_3 = \infty, C_1 = \text{open} \end{pmatrix}$ | dV _{out} /dt② | | 12 | - | V/µ | | | 90% B B B B B B B B B B B B B B B B B B B | $\begin{cases} V^{+} = 12 \text{ Vdc}, V^{-} = -6.0 \text{ Vdc} \\ Gain = 1.0, V_{in} = 10 \text{ mV}, \end{cases}$ | t _f os | = | 10
25 | 50
120 | %
ns | | | → V | $\begin{cases} R_1 = 10 \text{ k}\Omega, R_2 = 10 \text{ k}\Omega, \end{cases}$ | tnd | - | 16 | - | ns | | | W RATE $V_{os} = C_1$ R_3 C_2 $R_L = 100 \text{ k}\Omega$ $C_L \le 100 \text{ pF}$ | $\left(C_{1}^{1} = 0.01 \ \mu F, R_{3}^{2} = 20 \Omega, C_{2} = open \right)$ | dV dt2 | - | 1.5 | - | V /μ | | | | Average Temperature Coefficient of | TCVio | | | | μ V / | | | | Input Offset Voltage $R_S = 50 \Omega$
$(T_A = +25 \text{ to } +125^{\circ}\text{C})$ | - | _ | 2.5 | - | | | | | $(T_A = -55 \text{ to } +25^{\circ}\text{C})$ | | - | 2.0 | - | | | | | Average Temperature Coefficient | TC _{Iio} | | | | nA/ | | | | Input Offset Current
(T _A = +25°C to +125°C) | -10 | | 0.05 | _ | | | | | $(T_A = -55 \text{ to } +25^{\circ}\text{C})$ | | _ | 1.5 | - | | | | | DC Bowen Dissination | P _D | | | | mW | | | | (V _{out} = 0, V ⁺ = 6.0 Vdc, V ⁻ = -3.0 Vdc) | ט | - | 17 | 30 | | | | <u> </u> | $(V_{out} = 0, V^+ = 12 \text{ Vdc}, V^- = -6.0 \text{ Vdc})$ | | - | 70 | 120 | | | | C FOV+ SENSITIVITY = S | Positive Supply Sensitivity | S+ | | 60 | 200 | 11V/ | | | G | (V constant = -6.0 Vdc,
V = 12 Vdc to 6.0 Vdc) | | | 00 | | | | | Vout | Negative Supply Sensitivity
(V+constant = 12 Vdc, | S- | | 60 | 200 | μV/ | | | ΔV _{out} | | | | | | | | #### TYPICAL OUTPUT CHARACTERISTICS $V+ = 12 \text{ Vdc}, V- = -6.0 \text{ Vdc}, T_A = 25^{\circ}C$ FIGURE 2 - OPEN LOOP VOLTAGE GAIN versus FREQUENCY 80 = 430 pF = 390 Ω = 1500 pF = 150 Ω 60 Avol, VOLTAGE GAIN (dB) $= 0.01 \mu$ = 22 40 20 1.0 k 10 k 20 k 50 k 100 k 10 M 100 M f, FREQUENCY (Hz) FIGURE 3 — VOLTAGE GAIN versus FREQUENCY ### MC1712 (continued)