
OPERATIONAL AMPLIFIER

OPERATIONAL AMPLIFIERS

MC1709C

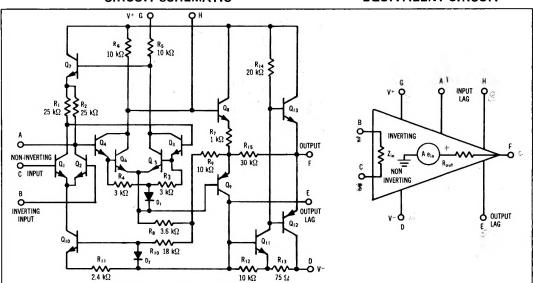
. . . designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.

Typical Amplifier Features:

- High-Performance Open Loop Gain Characteristics
 AVOL = 45,000 typical
- Low Temperature Drift ±3.0 μV/°C
- Large Output Voltage Swing –
 ±14 V typical @ ±15 V Supply
- Low Output Impedance Z_{out} = 150 ohms typical

PIN CONNECTIONS								
Schematic	Α	В	С	D	Ε	F	G	Н
"G" Package	1	2	3	4	5	6	7	8
"F" Package	2	3	4	5	6	7	8	9
"P" Package	3	4	5	6*	9	10	11	12

^{*}Pin 7 is electrically connected to substrate and V


MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	v* v-	+18 -18	Vdc Vdc
Differential Input Signal	v _{in}	±5.0	Volts
Common Mode Input Swing	CMV	±V ⁺	Volts
Load Current	ľL	10	mA
Output Short Circuit Duration	t _s	5.0	s
Power Dissipation (Package Limitation) Metal Can Derate above 25° C Flat Package Derate above 25° C Plastic Package Derate above 25° C	P _D	680 4.6 500 3.3 400 3.3	mW mw/°C mW mW/°C mW mW/°C
Operating Temperature Range*	T _A	0 to +75	°C
Storage Temperature Range Metal Can and Flat Package Plastic Package	T _{stg}	-65 to +150 -65 to +125	°c

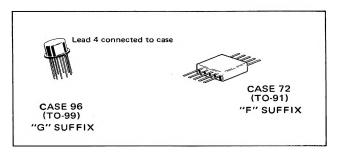
For full temperature range (-55°C to +125°C) and characteristic curves, see MC1709 data sheet.

CIRCUIT SCHEMATIC

EQUIVALENT CIRCUIT

ELECTRICAL CHARACTERISTICS (V· = +15 Vdc, V- = -15 Vdc, TA = 25°C unless otherwise noted)

Characteristic Definitions (linear operation) Characteristic		Symbol	Min	Тур	Max	Unit	
A _{VOL} = $\frac{e_{out}}{e_{in}}$	Open Loop Voltage Gain $(R_L=2 \text{ k}\Omega, V_{out}=\pm 10 \text{ V}, T_A=0 ^{\circ}\text{C to } +75 ^{\circ}\text{C})$	Avol	15,000	45,000	-	-	
e _{in} Z _{in} Z _{in} F e _{out}	Output Impedance (f = 20 Hz)	Zout		150	-	Ω	
* *	Input Impedance (f = 20 Hz)	z _{in}	50	250	-	kΩ	
- B	Output Voltage Swing (R _L = 10 kΩ) (R _L = 2 kΩ)	Vout	±12 ±10	±14 ±13	7	v _{peak}	
e _{in} B	Input Common Mode Voltage Swing	CMVin	±8.0	±10	-	V _{peak}	
$= \frac{1}{e_{in}} + 8 \text{ V} \qquad C \qquad F \qquad \frac{e_{out}}{e_{in}}$ $= A_{VCM} - A_{VOL}$	Common Mode Rejection Ratio	CM _{rej}	65	90	-	dB	
l ₂ o B F	Input Bias Current $\left(I_{b} = \frac{I_{1} + I_{2}}{2}\right) \cdot \left(T_{A} = +25^{\circ}C\right)$ $\left(T_{A} = 0^{\circ}C\right)$	I,b	₇	0.3	1.5 2.0	μА	
120-B	Input Offset Current (I _{io} = I ₁ - I ₂)	I _{io}	-	0.1	0.5	μА	
1,0 C	$(I_{io} = I_1 - I_2, T_A = 0 ^{\circ}C)$ $(I_{io} = I_1 - I_2, T_A = +75 ^{\circ}C)$		-	-	0.75 0.75		
V _{io} B F V _{ort} = 0	Input Offset Voltage (T _A = 25°C) (T _A = 0°C,+75°C)	v _{io}		2.0	7.5 10	mV	
e _{in} 50% - R ₂ R ₃ R ₃	Step Response Gain = 100, 5% overshoot, $R_1 = 1 \text{ k}\Omega$, $R_2 = 100 \text{ k}\Omega$, $R_3 = 1.5 \text{ k}\Omega$, $C_1 = 100 \text{ pF}$, $C_2 = 3 \text{ pF}$	tf tpd dV _{out} /dt ①	-	0.8 0.38 12	-	μs μs V/μs	
10% 400 mV R ₁ C ₁ A H	(Gain = 10, 10% overshoot,	t _f		0.6	-	μв	
90% B OVERSHOOT CO	$\begin{cases} R_1 = 1 \text{ k}\Omega, R_2 = 10 \text{ k}\Omega, \\ R_3 = 1.5 \text{ k}\Omega, C_1 = 500 \text{ pF}, C_2 = 20 \text{ pF} \end{cases}$	dV _{out} /dt ①	-	0.34 1.7	-	μs V/μs	
SLEW RATE	(Gain = 1, 5% overshoot,	t _f	-	2,2	-	μѕ	
	$\begin{cases} R_1 = 10 \text{ k}\Omega, R_2 = 10 \text{ k}\Omega, \\ R_3 = 1.5 \text{ k}\Omega, C_1 = 5000 \text{ pF}, C_2 = 200 \text{ pF} \end{cases}$	dV _{out} /dt ①	-	1.3 0.25	-	μs V/μs	
	Average Temperature Coefficient of Input Offset Voltage (R _S = 50 Ω, T _A = 0 °C to +75 °C)	TCVio	-	3.0	_	μV/°C	
	$(R_S \le 10 \text{ k}\Omega, T_A = 0 \text{ °C to } +75 \text{ °C})$ DC Power Dissipation	P _D	-	6.0	-	mW	
$B \sim G^{V^+}$ Sensitivity = S	(Power Supply = ±15 V, V _{out} = 0) Positive Supply Sensitivity	s ⁺	-	80	200	μV/V	
F Vout	(V constant) Negative Supply Sensitivity		-	25	200	μV/V	
$S = \frac{\triangle V_{out}}{\triangle V_{s}(A_{VOL})}$	(V ⁺ constant)	s	-	25	200	μν/ν	


¹ dV_{out}/dt = Slew Rate

WIDEBAND DC AMPLIFIER

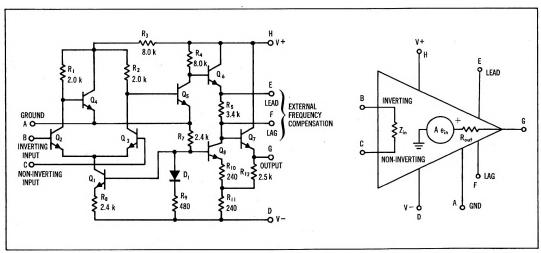
OPERATIONAL AMPLIFIERS

MC1712

... designed for use as an operational amplifier utilizing operating characteristics as a function of the external feedback components.

Typical Amplifier Features:

- Open Loop Gain AVOL = 3600 typical
- Low Temperature Drift ±2.5 μV/^OC
- Output Swing ±5.3 V typical @ +12 V and -6.0 V Supplies
- Low Output Impedance –
 Z_{out} = 200 ohms typical


MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage (Total between V ⁺ and V ⁻ terminals)	v+ + v-	21	Vdc
Differential Input Signal	v _{in}	±5.0	Volts
Common Mode Input Swing	CMV _{in}	+1.5 -6.0	Volts
Peak Load Current	I _L	50	mA
Power Dissipation (Package Limitation) Metal Can Derate above T _A = 25°C Flat Package Derate above T _A = 25°C	P _D	680 4. 6 500 3. 3	mW mW/° C mW mW/° C
Operating Temperature Range	T _A	-55 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +150	°c

PIN CONNECTIONS								
Schematic	А	8	С	D	Ε	F	G	Н
"G" Package	1	2	3	4	5	6	7	8
"F" Package	2	3	4	5	6	7	8	10

CIRCUIT SCHEMATIC

EQUIVALENT CIRCUIT

MC1712 (continued)

Characteristic Definitions ①	Characteristic	Symbol	Min	Тур	Max	Unit	
	Open Loop Voltage Gain R _L = 100 kΩ	A _{VOL}				V/V	
	$(V^+ = 6.0 \text{ Vdc}, V^- = -3.0 \text{ Vdc},$		600	900	1500		
	$(V_{\text{out}} = \pm 2.5 \text{ V})$ $(V^{+} = 12 \text{ Vdc}, V^{-} = -6.0 \text{ Vdc},$						
Avol = $\frac{e_{out}}{e_{t-}}$	V _{out} = ± 5.0 V)		2500	3600	6000		
e _{in}	$(V^{T} = 12 \text{ Vdc}, V^{T} = -6.0 \text{ Vdc},$		2000		7000		
	$V_{\text{out}} = \pm 5.0 \text{ Vdc}, T_{\text{A}} = -55, +125^{\circ}\text{C}$ $(V^{+} = 6.0 \text{ Vdc}, V^{-} = -3.0 \text{ Vdc},$		2000	1	1000		
Zout	V _{out} = ± 2.5 V, T _A = -55 to +125°C)	7	500		1750		
6.	Output Impedance (V+ = 6.0 Vdc, V- = -3.0 Vdc, f = 20 Hz)	Zout		300	700	ohms	
Z _{in} G	(V+ = 12 Vdc, V- = -6.0 Vdc, f = 20 Hz) Input Impedance	7	-	200	500	k ohi	
B e _{out}	$(V^+ = 6.0 \text{ Vdc}, V^- = -3.0 \text{ Vdc}, f = 20 \text{ Hz})$	z _{in}	22	70	-	K O.	
÷ ÷	$(V^{+} = 6.0 \text{ Vdc}, V^{-} = -3.0 \text{ Vdc}, f = 20 \text{ Hz},$ $T_{A} = -55^{\circ}\text{C}, +125^{\circ}\text{C})$		8.0	-	-		
	$(V^+ = 12 \text{ Vdc}, V^- = -6.0 \text{ Vdc}, f = 20 \text{ Hz})$		16	40	-		
	$(V^{+} = 12 \text{ Vdc. } V^{-} = -6.0 \text{ Vdc. } f = 20 \text{ Hz.}$		6.0	_			
	T _A = -55°C, +125°C) Output Voltage Swing	v	0.0	-		v	
C	$(V^{+} = 6.0 \text{ Vdc}, V^{-} = -3.0 \text{ Vdc}, R_{L} = 100 \text{ k}\Omega)$ $(V^{+} = 12 \text{ Vdc}, V^{-} = -6.0 \text{ Vdc}, R_{L} = 100 \text{ k}\Omega)$	out	±2.5	±2.7	-	pea	
	$(V^{+} = 12 \text{ Vdc}, V^{-} = -6.0 \text{ Vdc}, R_{L} = 100 \text{ k}\Omega)$		±5.0	±5.3	-		
GOV	$(V^{+} = +6.0 \text{ Vdc}, V^{-} = -3.0 \text{ Vdc}, R_{L} = 10 \text{ k}\Omega)$		± 1.5	± 2.0			
± B	$(V^+ = +12 \text{ Vdc}, V^- = -6.0 \text{ Vdc}, R_T = 10 \text{ k}\Omega)$		± 3.5	± 4.0			
	Input Common Mode Voltage Swing	CMV				V _{pe}	
e _{in} C	$(V^+ = 6.0 \text{ Vdc}, V^- = -3.0 \text{ Vdc})$	ın	+0.5	-	:	pea	
0	$(V^+ = 12 \text{ Vdc}, V^- = -6.0 \text{ Vdc})$		+0.5	-	-		
G Gent	Common Mode Rejection Ratio	CM _{rej}	-4.0		-	dB	
$A_{VCM} = \frac{e_{out}}{e_{in}}$ $CM_{i*j} = A_{VCM} - A_{VOL}$	$(V^+ = 6.0 \text{ Vdc}, V^- = -3.0 \text{ Vdc}, f \le 1.0 \text{ kHz})$ $(V^+ = 12 \text{ Vdc}, V^- = -6.0 \text{ Vdc}, f \le 1.0 \text{ kHz})$	rej	80	100	-		
	Input Bias Current	I _b	80	100	-	μA	
12 O C	T _A = 25° C	U				,	
	$I_{b} = \frac{I_{1} + I_{2}}{2}, (V^{+} = 6.0 \text{ Vdc}, V^{-} = -3.0 \text{ Vdc})$ $I_{b} = \frac{I_{1} + I_{2}}{2}, (V^{+} = 12 \text{ Vdc}, V^{-} = -6.0 \text{ Vdc})$ $T_{A} = -55^{\circ} \text{ C}$			1.2	3.5		
G	$I_b = \frac{1}{2}$, $T_A = -55^{\circ}C$						
II B	$(V^+ = 6.0 \text{ Vdc}, V^- = -3.0 \text{ Vdc})$		-	2.5	7.5		
	$(V^+ = 12 \text{ Vdc}, V^- = -6.0 \text{ Vdc})$ Input Offset Current $(I_{io} = I_1 - I_2)$	I _{io}	-	4.0	10	μΑ	
12 0	(VI + - C O VIde VI 2 O VIde)	10	-	0.1	0.5		
	(V = 6.0 Vdc, V = -3.0 Vdc, T _A = -55 to +125°C)				1.5		
G G	(V+ - 12 Vdc V 6 0 Vdc)		-	0.2	0.5		
В	(V = 12 Vdc, V = -6.0 Vdc, T _A = -55 to +125°C)			-	1.5		
· c /	Input Offset Voltage R _S = 2.0 kΩ	v _{io}				mV	
	$(V^+ = 6.0 \text{ Vdc}, V^- = -3.0 \text{ Vdc})$ $(V^+ = 6.0 \text{ Vdc}, V^- = -3.0 \text{ Vdc}, T_A =$		-	1.3	3.0		
V _{ie} G	-55°C, +125°C)		-		4.0		
	$(V^{+} = 12 \text{ Vdc}, V^{-} = -6.0 \text{ Vdc})$ $(V^{+} = 12 \text{ Vdc}, V^{-} = -6.0 \text{ Vdc}, T_{A} = -6.0 \text{ Vdc}$		-	1.1	2.0		
± B V _{ovt} = 0	-55°C, +125°C)		-	-	3.0		
60% R ₁ C R ₂	Step Response V + = 12 Vdc, V - = -6.0 Vdc	v _{os}	-	20	40	%	
1 0-1	Gain = 100, V _{in} = 1.0 mV,	t _f	-	10	30	ns	
G G	$R_1 = 1.0 \text{ k}\Omega, R_2 = 100 \text{ k}\Omega,$	t _{pd}	-	10	-	ns	
% B O R € C	$\begin{pmatrix} C_2 = 50 \text{ pF}, R_3 = \infty, C_1 = \text{open} \end{pmatrix}$	dV _{out} /dt②		12	-	V/µ	
90% B B B B B B B B B B B B B B B B B B B	$\begin{cases} V^{+} = 12 \text{ Vdc}, V^{-} = -6.0 \text{ Vdc} \\ Gain = 1.0, V_{in} = 10 \text{ mV}, \end{cases}$	t _f os	=	10 25	50 120	% ns	
→ V	$\begin{cases} R_1 = 10 \text{ k}\Omega, R_2 = 10 \text{ k}\Omega, \end{cases}$	tnd	-	16	-	ns	
W RATE $V_{os} = C_1$ R_3 C_2 $R_L = 100 \text{ k}\Omega$ $C_L \le 100 \text{ pF}$	$\left(C_{1}^{1} = 0.01 \ \mu F, R_{3}^{2} = 20 \Omega, C_{2} = open \right)$	dV dt2	-	1.5	-	V /μ	
	Average Temperature Coefficient of	TCVio				μ V /	
	Input Offset Voltage $R_S = 50 \Omega$ $(T_A = +25 \text{ to } +125^{\circ}\text{C})$	-	_	2.5	-		
	$(T_A = -55 \text{ to } +25^{\circ}\text{C})$		-	2.0	-		
	Average Temperature Coefficient	TC _{Iio}				nA/	
	Input Offset Current (T _A = +25°C to +125°C)	-10		0.05	_		
	$(T_A = -55 \text{ to } +25^{\circ}\text{C})$		_	1.5	-		
	DC Bowen Dissination	P _D				mW	
	(V _{out} = 0, V ⁺ = 6.0 Vdc, V ⁻ = -3.0 Vdc)	ט	-	17	30		
<u> </u>	$(V_{out} = 0, V^+ = 12 \text{ Vdc}, V^- = -6.0 \text{ Vdc})$		-	70	120		
C FOV+ SENSITIVITY = S	Positive Supply Sensitivity	S+		60	200	11V/	
G	(V constant = -6.0 Vdc, V = 12 Vdc to 6.0 Vdc)			00			
Vout	Negative Supply Sensitivity (V+constant = 12 Vdc,	S-		60	200	μV/	
ΔV _{out}							

TYPICAL OUTPUT CHARACTERISTICS

 $V+ = 12 \text{ Vdc}, V- = -6.0 \text{ Vdc}, T_A = 25^{\circ}C$

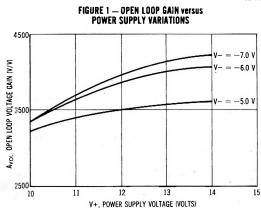
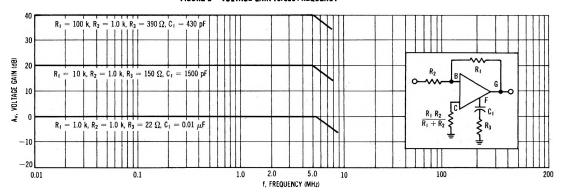
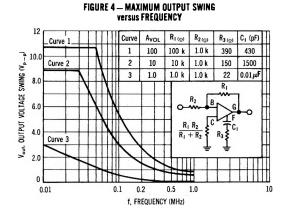
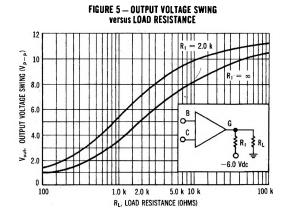
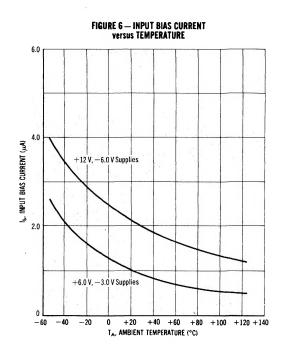
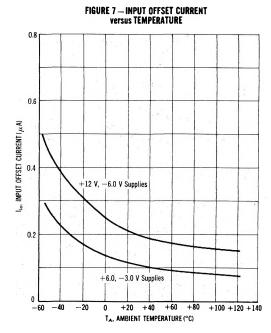
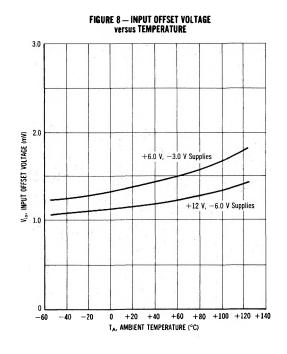
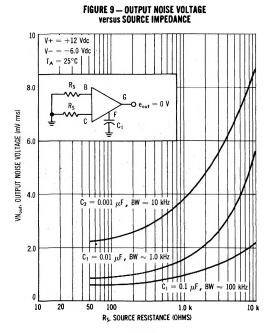





FIGURE 2 - OPEN LOOP VOLTAGE GAIN versus FREQUENCY 80 = 430 pF = 390 Ω = 1500 pF = 150 Ω 60 Avol, VOLTAGE GAIN (dB) $= 0.01 \mu$ = 22 40 20 1.0 k 10 k 20 k 50 k 100 k 10 M 100 M f, FREQUENCY (Hz)


FIGURE 3 — VOLTAGE GAIN versus FREQUENCY







MC1712 (continued)

