HIGH-FREQUENCY CIRCUITS

MC1552G MC1553G

MONOLITHIC VIDEO AMPLIFIER

. . . a three-stage, direct-coupled, commonemitter cascade incorporating series-series feedback to achieve stable voltage gain, low distortion, and wide bandwidth. Employs a temperature-compensated dc feedback loop to stabilize the operating point and a currentbiased emitter follower output. Intended for use as either a wide-band linear amplifier or as a fast rise pulse amplifier.

- High Gain 34 dB ± 1 dB (MC1552)
 - 52 dB ± 1 dB (MC1553)
- Wide Bandwidth 40 MHz (MC1552) 35 MHz (MC1553)
- Low Distortion 0.2% at 200 kHz
- Low Temperature Drift ±0.002 dB/°C

MAXIMUM RATINGS (T_A = +25°C unless otherwise noted)

Rating	Symbol	Value	Unit	
Power Supply Voltage, Pin 9	v⁺	9	Vdc	
Input Voltage, Pin 1 to Pin 2 (R _S = 500 ohms)	v _{in}	1, 0	V(rms)	
Power Dissipation (Package Limitation) Derate above T _A = -25°C	P _D	680 4.6	mW mW/°C	
Operating Temperature Range	T _A	-55 to +125	³C	
Storage Temperature Range	Tstg	-65 to +150	°C	

HIGH FREQUENCY INTEGRATED CIRCUITS SILICON EPITAXIAL PASSIVATED

See Packaging Information Section for outline dimensions.

ELECTRICAL CHARACTERISTICS (V* = +6 Vdc, T_A = +25 °C unless otherwise noted)

Characteris	tic	Fig. No.	Gain . Option	Symbol	Min	Тур	Max	Unit
Voltage Gain	MC1552	3	50 100	V _{out} /V _{in}	44 87	50 100	56 113	V; V
	MC1553		200 400		175 350	200 400	225 450	
Voltage Gain Variation (TA = -55°C to -125°C)	-	3	All	-	_	;0.2	_	d₿
	MC1552	3,6	50 100	BW	2 1 17	40 35		мн
	MC1553		200 400		17 7.5	35 15	=	
Input Impedance (f = 100 kHz, R _L = 1 kΩ)		-	All	z _{in}	7	10	_	kΩ
Output Impedance (f = 100 kHz, $R_S = 50 \Omega$)		-	Ali	Zout	_	16	50	Ω
DC Output Voltage	•	3	All	V _{out} (dc)	2.5	2.9	3.2	Vde
DC Output Voltage Variation (TA = -55°C to -125°C)		3	All	△V _{out} (dc)	_	:0.05	· _	Vdo
Output Voltage Swing (Z _L ≥ 1 kΩ, V _{in} = 100 mV	[rms])	3	All	Vout	3.6	4. 2	_	V _p .
Power Dissipation			All	P _D	-	75	120	m۱
,	MC1552	3, 4	50 100	t _{pd}	-	8 9	Ξ	ns
	MC1553		200 400		1 -	10 25		
	MC1552	3, 4	50 100	t _r	=	9 12	16 20	ns
	MC1553		200 400		-	11 30	20 45	
Overshoot		3, 4	Ali	(V _{os} /V _p)100	_	5	_	c _o
Noise Figure $(R_S = 400 \Omega, f_0 = 30 MHz,$	BW = 3 MHz)	_	All	NF	_	5	_	dB
Total Harmonic Distortion $(V_{out} = 2 V_{p-p}, f = 200 kH)$	z, R _L = 1 kΩ)	_	All	THD	_	0.2	_	જ

*To obtain the voltage-gain characteristic desired, use the following pin connections:

Туре	Voltage Gain	Pin Connections
MC1552	50	Pin 3 Open
	100	Ground Pin 3
MC1553	200	Connect Pin 3 to Pin 4
11101333	400	Pins 3 and 4 Open

NOTES

- 1. Ground Pin 6 as close to can as possible to minimize overshoot. Best results by directly grounding can.
- 2. If large input and output coupling capacitors are used, place shield between them to avoid input-output coupling.
- 3. A high-frequency capacitor must always be used to bypass the power supply. This capacitor should be as close to the circuit as possible.
- 4. Voltage gain can be adjusted to any value between 50 and 3000 by connecting an external resistor from Pin 4 to ground on MC1552, or from Pin 3 to ground on MC1553, as shown in

Figure 8. Under these conditions, the following equations must be used to determine C_1 and C_2 rather than the circuits shown in Figure 5.

Fig. 5b
$$C_1 = \frac{1}{2\pi f_x(1.7 \times 104)}$$
 Farads; $C_2 = \frac{8 \, C_1 (V_{out}/V_{in})}{8 \, C_1 (V_{out}/V_{in})}$ Farads
Fig. 5c $C_1 = \frac{V_{out}/V_{in}}{2\pi f_x(1.5 \times 104)}$ Farads

Fig. 5d
$$C_2 = \frac{V_{out}/V_{in}}{2\pi f_c(3 \times 10^3)}$$
 Farads

FIGURE 4 – PULSE RESPONSE DEFINITIONS

TYPICAL CHARACTERISTICS

TEST CIRCUITS FOR FREQUENCY RESPONSE
FIGURE 5b – CAPACITIVE COUPLED INPUT (R₅<5 kΩ)

FIGURE 5c - CAPACITIVE COUPLED INPUT (R_s < 500 Ω)

C₁ (µF)

0.4

0.2

0.1

0.06

0.04

0.02

0.01

FIGURE 5d - TRANSFORMER COUPLED INPUT

FIGURE 7 — MAXIMUM NEGATIVE SWING SLEW RATE versus LOAD CAPACITANCE

