HIGH-FREQUENCY CIRCUITS ## MC1552G MC1553G ### MONOLITHIC VIDEO AMPLIFIER . . . a three-stage, direct-coupled, commonemitter cascade incorporating series-series feedback to achieve stable voltage gain, low distortion, and wide bandwidth. Employs a temperature-compensated dc feedback loop to stabilize the operating point and a currentbiased emitter follower output. Intended for use as either a wide-band linear amplifier or as a fast rise pulse amplifier. - High Gain 34 dB ± 1 dB (MC1552) - 52 dB ± 1 dB (MC1553) - Wide Bandwidth 40 MHz (MC1552) 35 MHz (MC1553) - Low Distortion 0.2% at 200 kHz - Low Temperature Drift ±0.002 dB/°C #### MAXIMUM RATINGS (T_A = +25°C unless otherwise noted) | Rating | Symbol | Value | Unit | | |--|-----------------|-------------|-------------|--| | Power Supply Voltage, Pin 9 | v⁺ | 9 | Vdc | | | Input Voltage, Pin 1 to Pin 2
(R _S = 500 ohms) | v _{in} | 1, 0 | V(rms) | | | Power Dissipation (Package Limitation) Derate above T _A = -25°C | P _D | 680
4.6 | mW
mW/°C | | | Operating Temperature Range | T _A | -55 to +125 | ³C | | | Storage Temperature Range | Tstg | -65 to +150 | °C | | # HIGH FREQUENCY INTEGRATED CIRCUITS SILICON EPITAXIAL PASSIVATED See Packaging Information Section for outline dimensions. ELECTRICAL CHARACTERISTICS (V* = +6 Vdc, T_A = +25 °C unless otherwise noted) | Characteris | tic | Fig.
No. | Gain .
Option | Symbol | Min | Тур | Max | Unit | |---|---------------------------|-------------|------------------|---------------------------------------|------------|------------|------------|------------------| | Voltage Gain | MC1552 | 3 | 50
100 | V _{out} /V _{in} | 44
87 | 50
100 | 56
113 | V; V | | | MC1553 | | 200
400 | | 175
350 | 200
400 | 225
450 | | | Voltage Gain Variation
(TA = -55°C to -125°C) | - | 3 | All | - | _ | ;0.2 | _ | d₿ | | | MC1552 | 3,6 | 50
100 | BW | 2 1
17 | 40
35 | | мн | | | MC1553 | | 200
400 | | 17
7.5 | 35
15 | = | | | Input Impedance
(f = 100 kHz, R _L = 1 kΩ) | | - | All | z _{in} | 7 | 10 | _ | kΩ | | Output Impedance
(f = 100 kHz, $R_S = 50 \Omega$) | | - | Ali | Zout | _ | 16 | 50 | Ω | | DC Output Voltage | • | 3 | All | V _{out} (dc) | 2.5 | 2.9 | 3.2 | Vde | | DC Output Voltage Variation
(TA = -55°C to -125°C) | | 3 | All | △V _{out} (dc) | _ | :0.05 | · _ | Vdo | | Output Voltage Swing (Z _L ≥ 1 kΩ, V _{in} = 100 mV | [rms]) | 3 | All | Vout | 3.6 | 4. 2 | _ | V _p . | | Power Dissipation | | | All | P _D | - | 75 | 120 | m۱ | | , | MC1552 | 3, 4 | 50
100 | t _{pd} | - | 8
9 | Ξ | ns | | | MC1553 | | 200
400 | | 1 - | 10
25 | | | | | MC1552 | 3, 4 | 50
100 | t _r | = | 9
12 | 16
20 | ns | | | MC1553 | | 200
400 | | - | 11
30 | 20
45 | | | Overshoot | | 3, 4 | Ali | (V _{os} /V _p)100 | _ | 5 | _ | c _o | | Noise Figure $(R_S = 400 \Omega, f_0 = 30 MHz,$ | BW = 3 MHz) | _ | All | NF | _ | 5 | _ | dB | | Total Harmonic Distortion $(V_{out} = 2 V_{p-p}, f = 200 kH)$ | z, R _L = 1 kΩ) | _ | All | THD | _ | 0.2 | _ | જ | *To obtain the voltage-gain characteristic desired, use the following pin connections: | Туре | Voltage
Gain | Pin Connections | |----------|-----------------|------------------------| | MC1552 | 50 | Pin 3 Open | | | 100 | Ground Pin 3 | | MC1553 | 200 | Connect Pin 3 to Pin 4 | | 11101333 | 400 | Pins 3 and 4 Open | ### NOTES - 1. Ground Pin 6 as close to can as possible to minimize overshoot. Best results by directly grounding can. - 2. If large input and output coupling capacitors are used, place shield between them to avoid input-output coupling. - 3. A high-frequency capacitor must always be used to bypass the power supply. This capacitor should be as close to the circuit as possible. - 4. Voltage gain can be adjusted to any value between 50 and 3000 by connecting an external resistor from Pin 4 to ground on MC1552, or from Pin 3 to ground on MC1553, as shown in Figure 8. Under these conditions, the following equations must be used to determine C_1 and C_2 rather than the circuits shown in Figure 5. Fig. 5b $$C_1 = \frac{1}{2\pi f_x(1.7 \times 104)}$$ Farads; $C_2 = \frac{8 \, C_1 (V_{out}/V_{in})}{8 \, C_1 (V_{out}/V_{in})}$ Farads Fig. 5c $C_1 = \frac{V_{out}/V_{in}}{2\pi f_x(1.5 \times 104)}$ Farads Fig. 5d $$C_2 = \frac{V_{out}/V_{in}}{2\pi f_c(3 \times 10^3)}$$ Farads ### FIGURE 4 – PULSE RESPONSE DEFINITIONS ### TYPICAL CHARACTERISTICS TEST CIRCUITS FOR FREQUENCY RESPONSE FIGURE 5b – CAPACITIVE COUPLED INPUT (R₅<5 kΩ) FIGURE 5c - CAPACITIVE COUPLED INPUT (R_s < 500 Ω) C₁ (µF) 0.4 0.2 0.1 0.06 0.04 0.02 0.01 FIGURE 5d - TRANSFORMER COUPLED INPUT FIGURE 7 — MAXIMUM NEGATIVE SWING SLEW RATE versus LOAD CAPACITANCE