CORE MEMORY SENSE AMPLIFIER

SENSE AMPLIFIERS

MC1540

... consisting of a wideband differential amplifier, a dc restoration circuit which also incorporates facilities to externally adjust the threshold, and an MDTL output gate which is strobed from saturated logic. It is designed to detect bipolar differential signals derived by a core memory with cycle times as low as 0.5 µs.

Typical Amplifier Features:

- Differential Threshold Characteristics: Adjustable Threshold – 10-25 mV
- Nominal Threshold 10-25 mV Nominal Threshold – 17 mV @ V₆ = -6 V Input Offset Voltage – 1.0 mV typical

Threshold Drift – -10 μ V/^OC

- Fast Response Time 20 ns typical
- Short Recovery Time
 50 ns max @ e_{in} = 1.8 V Common Mode

50 ns max @ e_{in} = 400 mV Differential Mode

MAXIMUM RATINGS ($T_A = 25$ °C unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	v +	+10	Vdc
	v-	-10	Vdc
Differential Input Signal	v _{in}	±5.0	Vdc
Common Mode Input Voltage	CMV	±5.0	Vdc
Load Current	IL	25	mA
Power Dissipation (Package Limitation) Metal Can Derate above 25°C Flat Package Derate above 25°C	PD	680 4.6 500 3.3	m₩ m₩/°C m₩ m₩/°C
Operating Temperature Range Metal Can Flat Package	т _А	-55 to +125 -55 to +100	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

CIRCUIT SCHEMATIC

ELECTRICAL CHARACTERISTICS

 $(V^* = +6 \text{ Vdc} \pm 1\%, V^- = -6 \text{ Vdc} \pm 1\%, C_{ext} = 0.01 \ \mu\text{F}, T_A = 25^{\circ}\text{C}$ unless otherwise noted)

Characteristic	Figure	Symbol	Min	Тур	Max	Unit			
Input Threshold Voltage ($V_6 = -6.0 V$)	1	v _{th}	14.0	17.0	20.0	mV			
Input Offset Voltage	1	V _{io}	- 1	1.0	5.0	mV			
Input Bias Current $(V_3 = V_4 = 0)$	2	Ib	-	7.5	50	μΑ			
Input Offset Current	2	I _{i0}	-	2.0	10.0	μA			
Output Voltage, High $(V_3 = V_4 = 0)$	3	V _{OH}	5.9	_	-	Vdc			
Output Voltage, Low $(V_3 = V_4 = 0, V_{10} = +6 \text{ Vdc}, I_8 = 6 \text{ mAdc})$	3	VOL	-	_	350	mVdc			
Amplifier Voltage Gain (V ₃ = 15 mV)	4	AV	_	85	-	-			
Strobe Load Current $(V_9 = 0)$	-	^I s	-	-	1,2	mAdc			
Strobe Reverse Current (V ₉ = +5 Vdc)		I _R	-	-	2.0	μAdc			
Power Dissipation	-	PD	-	120	180	mW			
Propagation Delay						ns			
Input to Amplifier Output (V ₃ = 25 mV pulse, V ₉ = +2 Vdc)	5	t3+10+	-	10	15				
Input to Gate Output (V ₃ = 25 mV pulse, V ₉ = +2 Vdc)	5	t ₃₊₈₋	-	20	30				
Strobe to Gate Output ($V_3 = V_4 = 0, V_9 = +2 V$ pulse)	6	^t 9+8-	_	10	15				
Recovery Time	1	1		-		ns			
Differential Mode (V ₃ = 400 mV pulse)	7	t _R (dm)	-	20	50				
Common Mode (V ₃ = 1.8 V pulse)	8	^t R(cm)	_	20	50				
TESTS AT -55°C OR +125°C AS NOTED									
Input Threshold Voltage $(V_{-} = -6, 0 V, T_{-} = -55^{\circ}C)$	1	v _{th}	12.0	17.0	24.0	mV			
$(V_6^6 = -6.0 \text{ V}, T_A^A = +125^{\circ} \text{ C})$			12.0	17.0	22.0				
Input Bias Current ($V_3 = V_4 = 0$, $T_A = -55^{\circ}C$)	2	^I ь	_	-	100	μA			
Output Voltage, Low ($V_{10} = +6$ Vdc, $I_8 = 6$ mAdc, $T_A = +125^{\circ}C$)	3	V _{OL}	_	_	400	mVdc			
Strobe Reverse Current ($V_9 = +6 \text{ Vdc}, T_A = +125^{\circ}\text{C}$)	T.	^I R	_	-	25	μAdc			

DEFINITIONS

- Av Amplifier Voltage Gain The ratio of output voltage at pin 1 to the input voltage at pin 3 or 4.
- I_b Input Bias Current The average input current defined as $(I_3 + I_4)/2$.
- IR Strobe Reverse Current The leakage current when the strobe input is high.
- IS Strobe Load Current The amount of current drain from the circuit when the strobe pin is grounded.
- $\begin{array}{l} P_D & \text{Power Dissipation} \text{The amount of power dissipated in the} \\ \text{unit as defined by } |I_2 \times V^+| + |I_5 \times V^-|. \end{array}$
- tR Recovery Time The time required for the device to recover from the specified differential and common-mode overload inputs prior to strobe as referenced to the 10% point of the

trailing edge of an input pulse. The device is considered recovered when the threshold after a differential overload disturbance is within 1.0 mV of the threshold value without the disturbance, or, for common-mode disturbance, when the level at pin 10 is within 100 mV of the quiescent value.

- t_{x±y±} Propagation Delay The time required for the output pulse at pin y to achieve 50% of its final value or the 1.5 V level referenced to 50% of the input pulse at pin x. (The + and – denote positive and negative-going pulse transition.)
- V_{OH} Output Voltage High The high-level output voltage when the output gate is turned off.
- VOL Output Voltage Low The low-level output voltage when the output gete is turned on.
- Vth Input Threshold Input pulse amplitude that causes the output to begin saturation.
- Vio Input Offset Voltage The difference in Vth at each input.

For a more detailed discussion regarding application of sense amplifiers, see Application Note AN-245A, "The MC1540 – An Integrated Core Memory Sense Amplifier."

ADJUST