DIFFERENTIAL AMPLIFIER

DIFFERENTIAL AMPLIFIERS

MC1525G MC1526G

. . . designed for high gain applications. Features built-in temperature compensated current source for excellent temperature stability.

MONOLITHIC

MC1525G

DIFFERENTIAL AMPLIFIER

MC1526G

DARLINGTON INPUT DIFFERENTIAL AMPLIFIER

MAXIMUM RATINGS ($T_A = 25$ °C unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	V+	+14	Vdc
Power Supply Voltage	V-	-14	Vdc
Differential Input Signal	v _{in}	± 5	Vdc
Operating Temperature Range	T _A	-55 to +125	°C
Storage Temperature Range	T _{stg}	- 65 to + 175	- °C
Total Power Dissipation, (Package Limitation) Derate above T _A = 25°C	PD	680 4. 6	mW mW/ ^O C

CIRCUIT SCHEMATICS

MC1525G, MC1526G (continued)

ELECTRICAL CHARACTERISTICS (V = +12 Vdc, V = -12 Vdc, at $T_A = 25^{\circ}\text{C}$ unless otherwise noted)

Characteristic	Fig No	Symbol	Min	Тур	Max	Unit
Differential Voltage Gain MC1525 MC1526	3, 13	Add	120 50	140 65	160 75	_
Single Ended Voltage Gain MC1525 MC1526	4	A _V	=	75 45	=	. -
Output Voltage, Common Mode Both Types	5, 14	V _{o(CM)}	6.0	7.0	8.0	Vde
Maximum Output Swing Both Types	6	V _{out}	7.0	_	_	V _(р-р)
AC Unbalance Both Types	6	U	_	_	300	mV _(p-p)
Input Offset Voltage MC1525 MC1526	7, 15	v _{io}	=	=	5 7	mVde
Input Offset Current MC1525 MC1526	8, 16	I _{io}	=	=	4 2	μ Adc
Input Current MC1525 MC1526	8, 18	Iin	=	=	20 3.5	μAdc
Common Mode Rejection Both Types	9, 17	CM _{Rej}	80	_	_	dB
Bandwidth MC1525 MC1526	10	BW	1400 500	=	=	kHz
Differential Input Impedance MC1525 MC1526	11	Z _{in}	2. 0 60	=	=	kΩ
Single Ended Output Impedance Both Types	12	Zout	_	_	11	kΩ

MC1525G, MC1526G (continued)

DC Common Mode Input Voltage Set at: $V_{CM[min]} = 5.5$ Vdc for MC1526G, $V_{CM[min]} = 6.2$ Vdc for MC1525G

FIGURE 3 — DIFFERENTIAL VOLTAGE GAIN

FIGURE 4 - SINGLE - ENDED VOLTAGE GAIN

FIGURE 5 - OUTPUT VOLTAGE - COMMON MODE

FIGURE 6 - MAXIMUM OUTPUT SWING

FIGURE 7 - INPUT OFFSET VOLTAGE

FIGURE 8 — INPUT OFFSET CURRENT and INPUT CURRENT

DC Common Mode Input Voltage Set at: V_{CM[nin]} = 5.5 Vdc for MC1526G, V_{CM[nin]} = 6.2 Vdc for MC1525G

FIGURE 9 — COMMON MODE REJECTION

FIGURE 10 - BANDWIDTH

FIGURE 11 - DIFFERENTIAL INPUT IMPEDANCE

FIGURE 12 - SINGLE - ENDED OUTPUT IMPEDANCE

BIASING ARRANGEMENT

In the emitter of the current source transistor of each of the differential amplifiers, there are four resistors of different values which may be connected in seven ways. The resultant effective resistance in conjunction with a given $V_{\epsilon\epsilon}$ makes provision for different current levels. For convenience, the seven methods together with their effective resistances are tabulated below.

 ullet Pin 7 is connected to the substrate and must be connected to the V_{EE} supply for proper circuit operation.

METHOD	1	2	3	4	5	6	7
PIN CONNECTIONS	4-7	4-6, 5-7	4-5, 6-7	4-6	4-5	5-6	4,5,6 OPEN
EFFECTIVE RESISTANCE	$1.4\text{k}\Omega$	3.37 kΩ	7.0 kΩ	12.6kΩ	18.2 kΩ	16.8kΩ	22.4 kΩ

EFFECT OF TEMPERATURE ON CHARACTERISTICS

FIGURE 15 - INPUT OFFSET VOLTAGE

FIGURE 16 - INPUT OFFSET CURRENT

FIGURE 17 - COMMON MODE REJECTION

FIGURE 18— INPUT CURRENT

