HIGH-FREQUENCY CIRCUITS

MC1510G MC1410G

MONOLITHIC WIDEBAND VIDEO AMPLIFIER

. . . designed for use as a high-frequency differential amplifier with operating characteristics that provide a flat frequency response from dc to 40 MHz.

- High Gain Characteristics
 - $A_V = 93 \text{ typ}$
- Wide Bandwidth − dc to 40 MHz typ
- Large Output Voltage Swing
 4.5 V p-p typical @ ±6.0 V Supply
- Low Output Distortion THD ≤ 1.5% typ

VIDEO AMPLIFIER INTEGRATED CIRCUIT

See Packaging Information Section for outline dimensions.

MC1510G, MC1410G (continued)

MAXIMUM RATINGS (T_A = +25°C unless otherwise noted)

Rating	Symbol	Value	Unit		
Power Supply Voltage	V ⁺	+8.0	Vdc		
		-8.0	Vdc		
Differential Input Signal	Vin	±5.0	Volts		
Common Mode Input Swing	CMVin	±6.0	Volts		
Load Current	IL.	10	mA		
Output Short Circuit Duration	t _s	5.0	s		
Power Dissipation (Package Limitation) Metal Can Derate above T _A = +25 ^O C	PD	680 4.6	mW mW/ ^O C		
Operating Temperature Range MC1410 MC1510	TA	0 to +75 -55 to +125	°C		
Storage Temperature Range	T _{stg}	-65 to +150	+150 °C		

ELECTRICAL CHARACTERISTICS (V⁺ = +6 Vdc, V⁻ = -6 Vdc, R_L = 5.0 kohms, T_A = +25°C unless otherwise noted)

Characteristic	Symbol	MC1510		- 1	MC1410			i
		Min	Тур	Max	Min	Тур	Max	Unit
Single Ended Voltage Gain	Av(se)	75	93	110	60	90	120	V/V
Output Impedance (f = 20 kHz)	Z _{out}		35	\$	-	35	_	Ω
Input Impedance (f = 20 kHz)	Z _{in}	33 7	6.0	14(25)	_	6.0	_	kΩ
Bandwidth (-3.0 dB)	BW	1 1 - 1 T	40	100	-	40	_	MHz
Output Voltage Swing (f = 100 kHz)	Vout		4.5			4.5	_	Vp-p
Single Ended Output Distortion (ein < 0.2% Distortion)	THD	111	1.5	5.0	_	2:0	_	%
Input Common Mode Voltage Swing	CMVin	. lu	±1.0		_	±1.0	-	V _{peak}
Common Mode Voltage Gain (ein = 0.3 V rms, f = 100 kHz) Common Mode Rejection Ratio	AVCM CM _{rej}	-30 -	-45 85		-20	-40 85	-	dB
Input Bias Current $ \left(I_{b} = \frac{I_{1} + I_{2}}{2}\right) \text{Differential Output} = 0 $	I _P		20	80	-	50	100	μА
Input Offset Current (I _{io} = I ₁ - I ₂)	liol		3.0	20	_	5.0	30	μΑ
Output Offset Voltage Differential Mode (Vin = 0) Common Mode (Differential Output = 0)	V _{out(DM)}	2.6	0.5 3.1	1.3 3.5	- 2.0	0.5	2.0 4.0	Vdc
Step Response	t _f		9.0 9.0 9.0	12 - 12	- - -	10 9.0 10	15 - 15	ns
Average Temperature Coefficient of Input Offset Voltage $(R_S = 50 \ \Omega, T_A = T_{low}^{\circ} \text{ to } T_{high}^{\circ})$ $(R_S \leq 10 \ k \ \Omega, T_A = T_{low} \text{ to } T_{high})$	TCVio		±3.0 ±6.0	1	_	±3.0 ±6.0	-	μV/°C
DC Power Dissipation (Power Supply = ±6.0 V)	PD		150	220	_	165	220	mW
Equivalent Average Input Noise Voltage (f = 10Hz to 500 kHz) (R _S = 0)	V _n	į.	5.0			5.0	Ŧ	μ∨

TYPICAL CHARACTERISTICS

(V⁺ = +6.0 Vdc, V⁻ = -6.0 Vdc, T_A = +25°C unless otherwise noted)

FIGURE 3
POWER DISSIPATION versus SUPPLY VOLTAGE

FIGURE 4
VOLTAGE GAIN versus SUPPLY VOLTAGE

FIGURE 5
VOLTAGE GAIN versus TEMPERATURE

FIGURE 6
DC OUTPUT VOLTAGE versus TEMPERATURE

FIGURE 7
INPUT BIAS CURRENT versus TEMPERATURE

FIGURE 8
OUTPUT NOISE VOLTAGE versus SOURCE IMPEDANCE

TYPICAL APPLICATIONS

FIGURE 9 ENVELOPE DETECTOR

FIGURE 10
TWO STAGE VIDEO AMPLIFIER WITH ADJUSTABLE GAIN

FIGURE 11
SINGLE STAGE WIDEBAND AMPLIFIER

FIGURE 12
WEIN BRIDGE OSCILLATOR

