
OPERATIONAL AMPLIFIER

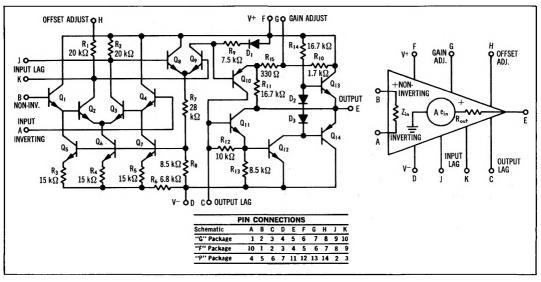
OPERATIONAL AMPLIFIERS

MC1433

... designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.

Typical Amplifier Features:

- High-Performance Open Loop Gain Characteristics
 AVOL = 60,000 typical
- Low Temperature Drift $-\pm 8.0 \,\mu\text{V/}^{\circ}\text{C}$
- Large Output Voltage Swing –
 ±13 V typical @±15 V Supply
- Low Output Impedance –
 Z_{out} = 100 ohms typical
- Input Offset Voltage Adjustable to Zero


MAXIMUM RATINGS (TA = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit	
Power Supply Voltage	V+ V-	+18 -18	Vdc Vdc	
Differential Input Signal	v _{in}	±10	Volts	
Common Mode Input Swing	CMV _{in}	±V+	Volts	
Load Current	1 _L	10	mA	
Output Short Circuit Duration	t _s	1.0	s	
Power Dissipation (Package Limitation) Metal Can Derate above 25°C Flat Package Derate above 25°C Plastic Package Derate above 25°C	P _D	680 4.6 500 3.3 400 3.3	mW mW/°C mW mW/°C mW mW/°C	
Operating Temperature Range*	T _A	0 to +75	°c	
Storage Temperature Range Metal Can and Flat Package Plastic Package	T _{stg}	-65 to +150 -65 to +125	°C	

^{*}For full temperature range (-55°C to +125°C) and characteristic curves, see MC1533 data sheet.

CIRCUIT SCHEMATIC

EQUIVALENT CIRCUIT

MC1433 (continued)

ELECTRICAL CHARACTERISTICS (V+ = +15 Vdc, V- = -15 Vdc, Tx = 25°C unless otherwise noted)

Characteristic Definitions®	Characteristic	Symbol	Min	Тур	Max	Unit
Ang 100 100	Open Loop Voltage Gain (V @ Pin G = +15 Vdc) (Pin G open) (V @ Pin G = +15 Vdc, T _A = 0°C, +75°C) (Pin G open, T _A = 0°C, +75°C)	A _{VOL}	30,000 10,000 20,000 5,000	60,000 30,000 50,000 25,000	-	-
	Output Impedance (Pin G open, f = 20 Hz)	Zout	-	100	150	Ω
	Input Impedance (Pin G open, f = 20 Hz)	z _{in}	300	600	-	kΩ
₩ F N N N N N N N N N N N N N N N N N N	Output Voltage Swing $(R_L = 10 \text{ k}\Omega)$ $(R_L = 2 \text{ k}\Omega)$	v _{out}	±12 ±10	±13	-	V peak
	Input Common Mode Voltage Swing	CMV	±8	±9	-	v _{peak}
$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$	Common Mode Rejection Ratio (V @ Pin G = +15 Vdc) (Pin G open)	CM _{rej}	80 70	100 94	-	dВ
	Input Bias Current $\left(I_{b} = \frac{I_{1} + I_{2}}{2}\right) \cdot (T_{A} = +25^{\circ}C)$ $\left(T_{A} = 0^{\circ}C\right)$	I _b	-	0.5	2.0	μА
	Input Offset Current $(I_{io} = I_1 - I_2)$ $(I_{io} = I_1 - I_2, T_A = 0^{\circ}C)$ $(I_{io} = I_1 - I_2, T_A = +75^{\circ}C)$	I _{io}		0.1	0.50 0.75 0.75	μА
N _m E N _m - 0	Input Offset Voltage ② (T _A = 25°C) (T _A = 0°C, +75°C)	v _{io}	-	1.0	7.5 10.0	mV
50 X 50 X 60 MV R ₁ C X X Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	$ \begin{cases} \text{Step Response} \\ \text{Gain} = 100, \ 15\% \ \text{overshoot}, \\ \text{R}_1 = 1 \ \text{k}\Omega, \ \text{R}_2 = 100 \ \text{k}\Omega, \\ \text{R}_3 = 100 \ \text{n}, \ \text{C}_1 = 0.02 \ \mu\text{F} \end{cases} $ $ \begin{cases} \text{Gain} = 10, \ \text{no overshoot}, \\ \text{R}_1 = 1 \ \text{k}\Omega, \ \text{R}_2 = 10 \ \text{k}\Omega, \\ \text{R}_3 = 10 \ \text{n}, \ \text{C}_1 = 0.05 \ \mu\text{F} \end{cases} $	tf tpd dVout/dt ③		0.15 0.06 11.0 0.3 0.1 1.5	-	μs μs V/μs μs μs V/μs
OVERSIOOT C C S pF	$ \left\{ \begin{array}{l} {\rm Gain} = 1, \ 20\% \ {\rm overshoot}, \\ {\rm R}_1 = 10 \ {\rm k} {\rm \Omega}, \ {\rm R}_2 = 10 \ {\rm k} {\rm \Omega}, \\ {\rm R}_3 = 5 {\rm \Omega}, \ {\rm C}_1 = 0.1 \ {\rm \mu F} \end{array} \right. $	t _f t _{pd} dv _{out} /dt ③	-	0.2 0.3 0.8	-	μs μs V/μs
	Average Temperature Coefficient of Input Offset Voltage $ (T_A = {}^{0}{}^{\text{C}} \text{ to } + 25{}^{\text{O}}\text{C}) $ $ (T_A = +25{}^{\text{O}}\text{C to } +75{}^{\text{O}}\text{C}) $	TC _{Vio}	-	10 8	-	μV/°C
	Average Temperature Coefficient of Input Offset Current (T _A = 0°C to +25°C) (T _A = +25°C to +75°C)	TC _{lio}	-	0.1 0.05	-	nA/°C
	DC Power Dissipation (Power Supply = ±15 V, V _{out} = 0)	P _D	-	125	240	mW
B SENSITIVITY - S	Positive Supply Sensitivity (V constant)	s ⁺	-	50	200	μV/V
Λ 00 S = ΔV _{AN} S = Δ	Negative Supply Sensitivity (V ⁺ constant)	s ⁻	-	50	200	μV/V

 \bigcirc dV_{out}/dt = Slew Rate

⁽¹⁾ All definitions imply linear operation (2) Input offset voltage $(V_{\hat{j}O})$ may be adjusted to zero by varying the potential on pin H