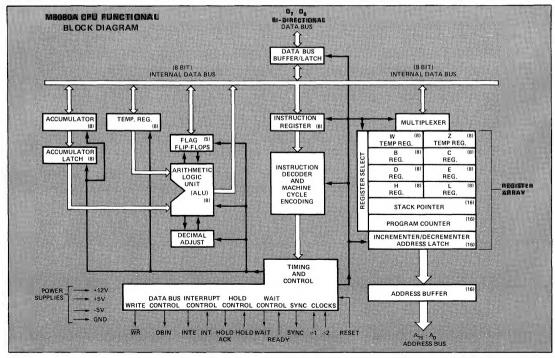
MILITARY TEMP. int **M8080A** SINGLE CHIP 8-BIT N-CHANNEL MICROPROCESSOR

The M8080A is functionally compatible with the Intel® 8080.


- Full Military Temperature Range -55°C to +125°C
- ±10% Power Supply Tolerance
- **2** μs Instruction Cycle
- Powerful Problem Solving Instruction Set
- Six General Purpose Registers and an Accumulator
- Sixteen Bit Program Counter for **Directly Addressing up to 64K Bytes** of Memory

- Sixteen Bit Stack Pointer and Stack Manipulation Instructions for Rapid Switching of the Program Environment
- Decimal, Binary and Double **Precision Arithmetic**
- Ability to Provide Priority Vectored Interrupts
- 512 Directly Addressed I/O Ports
- TTL Drive Capability

The Intel® M8080A is a complete 8-bit parallel central processing unit (CPU). It is fabricated on a single LSI chip using Intel's n-channel silicon gate MOS process. This offers the user a high performance solution to control and processing applications. The M8080A contains six 8-bit general purpose working registers and an accumulator. The six general purpose registers may be addressed individually or in pairs providing both single and double precision operators. Arithmetic and logical instructions set or reset four testable flags. A fifth flag provides decimal arithmetic operation.

The M8080A has an external stack feature wherein any portion of memory may be used as a last in/first out stack to store/ retrieve the contents of the accumulator, flags, program counter and all of the six general purpose registers. The sixteen bit stack pointer controls the addressing of this external stack. This stack gives the M8080A the ability to easily handle multiple level priority interrupts by rapidly storing and restoring processor status. It also provides almost unlimited subroutine nesting.

This microprocessor has been designed to simplify systems design. Separate 16-line address and 8-line bi-directional data busses are used to facilitate easy interface to memory and I/O. Signals to control the interface to memory and I/O are provided directly by the M8080A. Ultimate control of the address and data busses resides with the HOLD signal. It provides the ability to suspend processor operation and force the address and data busses into a high impedance state. This permits ORtying these busses with other controlling devices for (DMA) direct memory access or multi-processor operation.

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias55°C to +125°C
Storage Temperature
All Input or Output Voltages
With Respect to V _{BB}
V_{CC} , V_{DD} and V_{SS} With Respect to V_{BB} -0.3V to +20V
Power Dissipation 1.7W

*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. CHARACTERISTICS

 $T_A = -55^{\circ}C$ to $+125^{\circ}C$, $V_{DD} = +12V \pm 10\%$, $V_{CC} = +5V \pm 10\%$, $V_{BB} = -5V \pm 10\%$, $V_{SS} = 0V$, Unless Otherwise Noted.

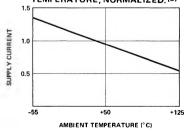
Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Condition
VILC	Clock Input Low Voltage	V _{SS} -1		V _{SS} +0.8	V	
V _{IHC}	Clock Input High Voltage	8.5		V _{DD} +1	v	
VIL	Input Low Voltage	V _{SS} -1		V _{SS} +0.8	v	
VIH	Input High Voltage	3.0		V _{CC} +1	V	
V _{OL}	Output Low Voltage			0.45	V	$I_{OL} = 1.9$ mA on all outputs, $I_{OH} = 150\mu$ A.
V _{OH}	Output High Voltage	3.7			V	
DD (AV)	Avg. Power Supply Current (V _{DD})		50	80	mA	Operation $T_{CY} = .48 \mu sec$ $V_{SS} \leq V_{IN} \leq V_{CC}$ $V_{SS} \leq V_{CC} \leq V_{DD}$
CC (AV)	Avg. Power Supply Current (V _{CC})		60	100	mA	
BB (AV)	Avg. Power Supply Current (V _{BB})		.01	1	mA	
կլ	Input Leakage			±10	μA	
ICL	Clock Leakage			±10	μA	
I _{DL} [2]	Data Bus Leakage in Input Mode			-100	μA	V _{SS} ≪V _{IN} ≪V _{SS} +0.8V
				-2.0	mA	V_{SS} +0.8V \leq V _{IN} \leq V _{CC}
	Address and Data Bus Leakage	·		+10		V _{ADDR/DATA} = V _{CC}
IFL	During HOLD			-100	μA	VADDR/DATA = VSS + 0.45V

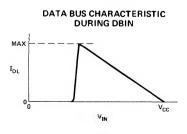
CAPACITANCE

 $T_{A} = 25^{\circ}C$ $V_{CC} = V_{DD} = V_{SS} = 0V, V_{BB} = -5V$

Symbol	Parameter	Тур.	Max.	Unit	Test Condition
Cφ	Clock Capacitance	17	25	pf	f _c = 1 MHz
C _{IN}	Input Capacitance	6	10	pf	Unmeasured Pins
COUT	Output Capacitance	10	20	pf	Returned to V _{SS}

NOTES:

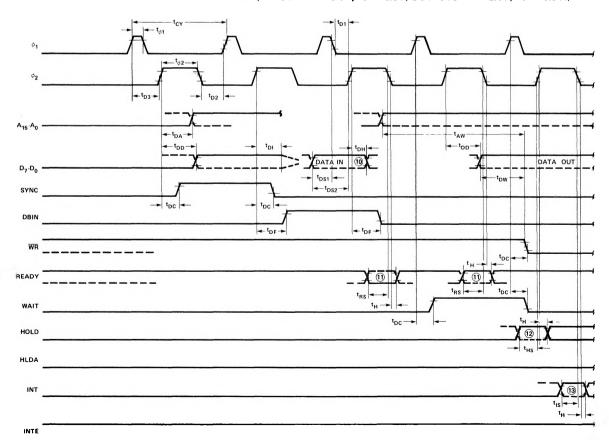

1. The RESET signal must be active for a minimum of 3 clock cycles.


2. When DBIN is high and $V_{IN} > V_{IH}$ an internal active pull up will

be switched onto the Data Bus.

3. ΔI supply / $\Delta T_A = -0.45\% / ^{\circ}C$.

TYPICAL SUPPLY CURRENT VS. TEMPERATURE, NORMALIZED. [3]



A.C. CHARACTERISTICS

 $T_A = -55^{\circ}C$ to $+125^{\circ}C$, $V_{DD} = +12V \pm 10\%$, $V_{CC} = +5V \pm 10\%$, $V_{BB} = -5V \pm 10\%$, $V_{SS} = 0V$, Unless Otherwise Noted.

Symbol	Parameter	Min.	Max.	Unit	Test Condition
t _{CY} [3]	Clock Period	0.48	2.0	μsec	
t _r , t _f	Clock Rise and Fall Time	0	50	n sec	
φ1	ϕ_1 Pulse Width	60		n sec	
φ2	ϕ_2 Pulse Width	220		n sec	
t _{D1}	Delay ϕ_1 to ϕ_2	0		n sec	
t _{D2}	Delay ϕ_2 to ϕ_1	80		n sec	
t _{D3}	Delay ϕ_1 to ϕ_2 Leading Edges	80		n sec	
DA ^[2]	Address Output Delay From ϕ_2		200	n sec	
DD [2]	Data Output Delay From ϕ_2		220	n sec	
^t DC ^[2]	Signal Output Delay From ϕ_1 , or ϕ_2 (SYNC, WR, WAIT, HLDA)		140	n sec	
t _{DF} [2]	DBIN Delay From ϕ_2	25	150	n sec	– C _L ≈ 50pf
t _{DI} [1]	Delay for Input Bus to Enter Input Mode		tDF	n sec	-
t _{DS1}	Data Setup Time During ϕ_1 and DBIN	30		n sec	

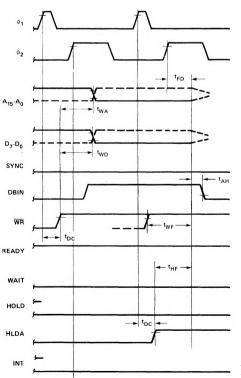
TIMING WAVEFORMS^[14] (Note: Timing measurements are made at the following reference voltages: CLOCK "1" = 7.0V, "0" = 1.0V; INPUTS "1" = 3.0V, "0" = 0.8V; OUTPUTS "1" = 2.0V, "0" = 0.8V.)

A.C. CHARACTERISTICS (Continued)

 $T_A = -55^{\circ}C$ to $+125^{\circ}C$, $V_{DD} = +12V \pm 10\%$, $V_{CC} = +5V \pm 10\%$, $V_{BB} = -5V \pm 10\%$, $V_{SS} = 0V$, Unless Otherwise Noted.

Symbol	Parameter	Min.	Max.	Unit	Test Condition
t _{DS2}	Data Setup Time to ϕ_2 During DBIN	130		n sec	
t _{DH} [1]	Data Hold Time From ϕ_2 During DBIN	[1]		n sec	
t _{IE} [2]	INTE Output Delay From ϕ_2		200	n sec	C _L = 50pf
t _{RS}	READY Setup Time During ϕ_2	120		n sec	1
t _{HS}	HOLD Setup Time to ϕ_2	140		nsec	1
t _{IS}	INT Setup Time During ϕ_2 (During ϕ_1 in Halt Mode)	120		n sec	
t _H	Hold Time From ϕ_2 (READY, INT, HOLD)	0		n sec	
t _{FD}	Delay to Float During Hold (Address and Data Bus)		130	n sec	
t _{AW} [2]	Address Stable Prior to WR	[5]		n sec	1
t _{DW} [2]	Output Data Stable Prior to WR	[6]		n sec	
t _{WD} [2]	Output Data Stable From WR	[7]		n sec	7
t _{WA} [2]	Address Stable From WR	[7]		n sec	_ C _L = 50pf
t _{HF} [2]	HLDA to Float Delay	[8]		n sec	
twf [2]	WR to Float Delay	[9]		n sec	
t _{AH} [2]	Address Hold Time After DBIN During HLDA	-20		n sec	

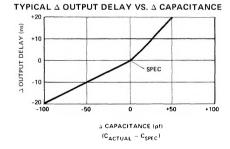
M8080A OUTPUT


3. $t_{CY} = t_{D3} + t_{r\phi2} + t_{\phi2} + t_{f\phi2} + t_{D2} + t_{r\phi1} \ge 480$ ns.

NOTES: 2. Load Circuit.

1. Data input should be enabled with DBIN status. No bus conflict can then occur and data hold time is assured. tDH = 50 ns or tDF, whichever is less.

150//A


+5V 2.1K

- t_{IE} -

INTE

4. The following are relevant when interfacing the M8080A to devices having VIH = 3.3V: a) Maximum output rise time from .8V to 3.3V = 100ns @ CL = SPEC.

- b) Output delay when measured to 3.0V = SPEC +60ns @ CL = SPEC.
- c) If CL ≠ SPEC, add .6ns/pF if CL> CSPEC, subtract .3ns/pF (from modified delay) if CL < CSPEC.
- 5. $t_{AW} = 2 t_{CY} - t_{D3} - t_{r\phi 2} - 140$ nsec.
- 6. $t_{QW} = t_{CY} t_{D3} t_{r\phi2} = 170$ nsec. 7. If not HLDA, $t_{WD} = t_{WA} = t_{D3} + t_{r\phi2} + 10$ ns. If HLDA, $t_{WD} = t_{WA} = t_{WF}$.
- 8. $t_{HF} = t_{D3} + t_{r\phi 2} 50$ ns.
- 9. $t_{WF} = t_{D3} + t_{r\phi 2} 10 n_s$
- 10. Data in must be stable for this period during DBIN T3. Both tDS1 and tDS2 must be satisfied.
- 11. Ready signal must be stable for this period during T2 or TW. (Must be externally synchronized.)
- 12. Hold signal must be stable for this period during T2 or TW when entering hold mode, and during T3, T4, T5 and TWH when in hold mode. (External synchronization is not required.)
- 13. Interrupt signal must be stable during this period of the last clock cycle of any instruction in order to be recognized on the following instruction. (External synchronization is not required.)
- 14. This timing diagram shows timing relationships only; it does not represent any specific machine cycle.