

# 1024K (128K x 8) CMOS UV EPROM - OTP ROM

- INTERCHANGEABLE WITH 1M BIT MASKED ROM (ROM PIN OUT).
- VERY FAST ACCESS TIME: 120ns.
- COMPATIBLE WITH HIGH SPEED MICRO-PROCESSORS, ZERO WAIT STATE.
- LOW "CMOS" POWER COMSUMPTION:
  - Active Current 35 mA
  - Standby Current 200 μA
- PROGRAMMING VOLTAGE 12.75V.
- ELECTRONIC SIGNATURE FOR AUTOMATED PROGRAMMING.
- PROGRAMMING TIMES AROUND 12 SEC-ONDS (PRESTO II ALGORITHM).

## **DESCRIPTION**

The M27C1000 is a high speed 1 Mbit ultraviolet erasable and electrically programmable EPROM ideally suited for 8-bit microprocessor systems requiring large programs.

It is pin compatible with 1Mbit Masked ROM version, when EPROM memory is only to be used for pre-production series.

It is organized as 131,072 words by 8 bits, and housed in a 32 pin window Ceramic Frit-Seal package.

The transparent lid allows the user to expose the chip to ultraviolet light to erase the bit pattern. A new pattern can then be written to the device by following the programming procedure.

In order to meet production requirements (cost effective solution or SMD), this product is also offered in a plastic package, either Plastic DIP or PLCC, for one time programming only.

#### **PIN FUNCTIONS**

| A0-A16          | ADDRESS INPUT       |
|-----------------|---------------------|
| CE              | CHIP ENABLE         |
| OE              | OUTPUT ENABLE       |
| PGM             | PROGRAM             |
| O0-O7           | DATA INPUT/OUTPUT   |
| NC              | NO CONNECTION       |
| Vcc             | +5V POWER SUPPLY    |
| V <sub>PP</sub> | PROGRAMMING VOLTAGE |

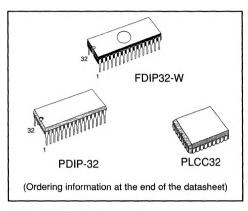



Figure 1: Pin Connection

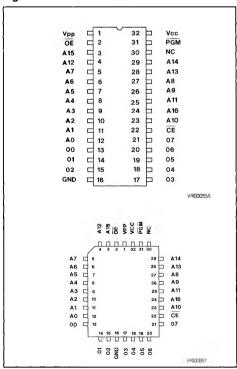



Figure 2: Block Diagram



## **ABSOLUTE MAXIMUM RATINGS**

| Symbol            | Parameter                                       | Value         | Unit |
|-------------------|-------------------------------------------------|---------------|------|
| Vi                | Input or Output voltages with respect to ground | -0.6 to +7.0  | V    |
| V <sub>PP</sub>   | Supply voltage with respect to ground           | -0.6 to +14.0 | V    |
| V <sub>A9</sub>   | Voltage on A9 with respect to ground            | -0.6 to +13.5 | V    |
| Vcc               | Supply voltage with respect to ground           | -0.6 to +7.0  | ٧    |
| T <sub>bias</sub> | Temperature range under bias                    | -50 to +125   | °C   |
| T <sub>stg</sub>  | Storage temperature range                       | -65 to +150   | °C   |

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

#### **OPERATING MODES**

| MODE                 |    |    | P              | INS |                 |                  |
|----------------------|----|----|----------------|-----|-----------------|------------------|
| MODE                 | CE | OE | A9             | PGM | V <sub>PP</sub> | OUTPUT           |
| READ                 | L  | L  | Х              | Х   | Vcc             | D <sub>out</sub> |
| OUTPUT DISABLE       | L  | Н  | Х              | Х   | Vcc             | HIGH Z           |
| STANDBY              | Н  | Х  | Х              | X   | Vcc             | HIGH Z           |
| PROGRAM              | L  | Х  | X              | L   | V <sub>PP</sub> | DiN              |
| PROGRAM VERIFY       | L  | L  | Х              | Н   | V <sub>PP</sub> | D <sub>OUT</sub> |
| PROGRAM INHIBIT      | Н  | Х  | X              | X   | V <sub>PP</sub> | HIGH Z           |
| ELECTRONIC SIGNATURE | L  | L  | V <sub>H</sub> | Н   | Vcc             | CODE             |

NOTE : X = Don't care;  $V_H = 12V \pm 0.5V$ ; H = High; L = Low

## **READ OPERATION**

## DC AND AC CONDITIONS

| SELECTION CODE                                             | F1           | F6             | F7            | F3            |
|------------------------------------------------------------|--------------|----------------|---------------|---------------|
| Operating Temperature Range                                | 0 to +70°C   | -40 to +85°C   | -40 to +105°C | -40 to +125°C |
| SELECTION CODE (Example for 0°C to 70°C Oper. Temp. Range) | 12XF1, 15XF1 | , 20XF1, 25XF1 | 12F1, 15F1,   | 20F1, 25F1    |
| Vcc                                                        | 5 V :        | ± 5 %          | 5 V ±         | 10 %          |

NOTE: "F" stands for ceramic package. Plastic packaged device code features B,M or C

## DC AND OPERATING CHARACTERISTICS (F1 AND F6 DEVICES)

| Symbol           | Parameter                              | Test Condition                                                                                                    | Val                         | Unit                 |      |  |
|------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------|------|--|
| Symbol           | raidilletei                            | rest Condition                                                                                                    | Min                         | Max                  | Unit |  |
| ILI              | Input Leakage Current                  | V <sub>IN</sub> = 0V to V <sub>CC</sub>                                                                           | -10                         | 10                   | μА   |  |
| lo               | Output Leakage Current                 | V <sub>IN</sub> = 0V to V <sub>CC</sub>                                                                           | -10                         | 10                   | μА   |  |
| l <sub>CC1</sub> | V <sub>CC</sub> Active Current         | $\overrightarrow{CE} = \overrightarrow{OE} = \overrightarrow{VI_L}, I_{OUT} = 0 \text{ mA}$ $(F = 5 \text{ MHz})$ |                             | 35                   | mA   |  |
| I <sub>CC2</sub> | V <sub>CC</sub> Standby Current - TTL  | CE = V <sub>IH</sub>                                                                                              |                             | 1                    | mA   |  |
| Icc3 (4)         | V <sub>CC</sub> Standby Current - CMOS | CE > V <sub>CC</sub> - 0.2 V                                                                                      |                             | 200                  | μΑ   |  |
| I <sub>PP1</sub> | V <sub>PP</sub> Read Current           | V <sub>PP</sub> = V <sub>CC</sub>                                                                                 |                             | 10                   | μΑ   |  |
| V <sub>IL</sub>  | Input Low Voltage                      |                                                                                                                   | -0.3                        | 0.8                  | ٧    |  |
| V <sub>IH</sub>  | Input High Voltage                     |                                                                                                                   | 2.0                         | V <sub>CC</sub> +1.0 | ٧    |  |
| V <sub>OL</sub>  | Output Low Voltage                     | I <sub>OL</sub> = 2.1 mA                                                                                          |                             | 0.4                  | ٧    |  |
| V <sub>OH</sub>  | Output High Voltage                    | I <sub>OH</sub> = -400μA<br>I <sub>OH</sub> = -100μA                                                              | 2.4<br>V <sub>CC</sub> -0.7 |                      | ٧    |  |

## **AC CHARACTERISTICS**

|                                |                                                                  |                       | M27C1000 |     |     |     |     |     |     |     |      |
|--------------------------------|------------------------------------------------------------------|-----------------------|----------|-----|-----|-----|-----|-----|-----|-----|------|
| Symbol                         | Parameter                                                        | Test condition        | -12      |     | -15 |     | -20 |     | -25 |     | Unit |
|                                |                                                                  |                       | Min      | Max | Min | Max | Min | Max | Min | Max |      |
| tacc                           | Address Output Delay                                             | CE=OE=VIL             |          | 120 |     | 150 |     | 200 |     | 250 | ns   |
| tce                            | CE to Output Delay                                               | OE=V <sub>IL</sub>    |          | 120 |     | 150 |     | 200 |     | 250 | ns   |
| toe                            | OE to Output Delay                                               | CE=V <sub>IL</sub>    |          | 60  |     | 65  |     | 70  |     | 100 | ns   |
| t <sub>DF</sub> <sup>(2)</sup> | OE High to Output Float                                          | CE=V <sub>IL</sub>    | 0        | 40  | 0   | 50  | 0   | 60  | 0   | 60  | ns   |
| tон                            | Output Hold from<br>Address, CE or OE<br>Whichever occured first | CE=OE=V <sub>IL</sub> | 0        |     | 0   |     | 0   |     | 0   |     | ns   |

# CAPACITANCE<sup>(3)</sup> (T<sub>A</sub> = 25°C, f = 1MHz)

| Symbol | Parameter          | Test Condition        | Min | Тур | Max | Unit |
|--------|--------------------|-----------------------|-----|-----|-----|------|
| CIN    | Input Capacitance  | V <sub>IN</sub> = 0V  |     | 4   | 6   | pF   |
| Соит   | Output Capacitance | V <sub>OUT</sub> = 0V |     | 8   | 12  | pF   |

NOTES: 1. Vcc must be applied simultaneously or before VPP and removed simultaneously or after VPP.

This parameter is only sampled and not 100 % tested. Output Float is defined as the point where data is no longer driven (see timing diagram).

3. This parameter is only sampled and not 100 % tested.

4. From date code 9112.

#### **AC TEST CONDITIONS**

≤ 20 ns Input Rise and Fall Times Timing Measurement Reference Levels: Input Pulse Levels : 0.45 to 2.4V Inputs: 0.8 and 2V - Outputs: 0.8 and 2V

Figure 3: AC Testing Input/Output Waveform

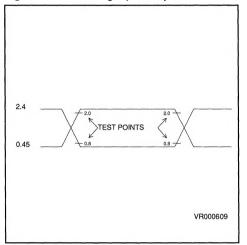



Figure 4: AC Testing Load Circuit

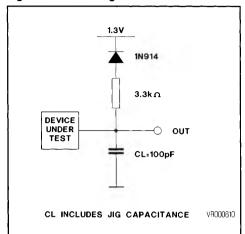
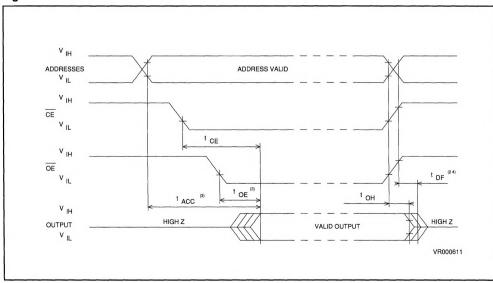




Figure 5 : AC Waveforms



NOTES: 1. Typical values are for TA = 25°C and nominal supply voltage.

This parameter is only sampled and not 100 % tested.
 DE may be delayed up to tce toe after the falling edge CE without impact on tce.
 The is specified from OE or CE whichever occurs first.

#### **DEVICE OPERATION**

The modes of operations of the M27C1000 are listed in the Operating Modes table. A single 5V power supply is required in the read mode. All inputs are TTL levels except for V<sub>PP</sub> and 12V on A9 for Electronic Signature.

#### **READ MODE**

The M27C1000 has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable (CE) is the power control and should be used for device selection. Output Enable (OE) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that the addresses are stable, the address access time (tACC) is equal to the delay from CE to output (tCE). Data is available at the output after delay of toe from the falling edge of OE, assuming that CE has been low and the addresses have been stable for at least tACC-tOE.

### STANDBY MODE

The M27C1000 has a standby mode which reduces the active current from 35 mA to 0.2 mA (from date code 9044). The M27C1000 is placed in the standby mode by applying a CMOS high signal to the CE input. When in the standby mode, the outputs are in a high impedance state, independent of the OE input.

#### TWO LINE OUTPUT CONTROL

Because EPROMs are usually used in larger memory arrays, the product features a 2 line control function which accommodates the use of multiple memory connection. The two line control function allows:

a) the lowest possible memory power dissipation,
 b) complete assurance that output bus contention will not occur.

For the most efficient use of these two control lines, CE should be decoded and used as the primary device selecting function, while OE should be made a common connection to all devices in the array and connected to the READ line from the system control bus. This ensures that all deselected memory devices are in their low power standby mode and that the output pins are only active when data is required from a particular memory device.

### SYSTEM CONSIDERATIONS

The power switching characteristics of CMOS-E4 EPROMs requires careful decoupling of the devices. The supply current, Icc, has three seg-

ments that are of interest to the system designer : the standby current level, the active current level, and transient current peaks that are produced by the falling and rising edges of CE. The magnitude of this transient current peaks is dependent on the output capacitive and inductive loading of the device. The associated transient voltage peaks can be suppressed by complying with the two line output control and by properly selected decoupling capacitors. It is recommended that a 1µF ceramic capacitor be used on every device between Vcc and GND. This should be a high frequency capacitor of low inherent inductance and should be placed as close to the device as possible. In addition, a 4.7µF bulk electrolytic capacitor should be used between Vcc. and GND for every eight devices. The bulk capacitor should be located near the power supply connection point. The purpose of the bulk capacitor is to overcome the voltage drop caused by the inductive effects of PCB traces.

#### **PROGRAMMING**

Caution: exceeding 14V on VPP pin will permanently damage the M27C1000.

When delivered (and after each erasure for UV EPROM), all bits of the M27C1000 are in the "1" state. Data is introduced by selectively programming "0s" into the desired bit locations. Although only "0s" will be programmed, both "1s" and "0s" can be present in the data word. The only way to change a "0" to a "1" is by die exposure to ultraviolet light (UV EPROM). The M27C1000 is in the programming mode when VPP input is at 12.75V, and CE and PGM are at TTL-low. The data to be programmed is applied 8 bits in parallel to the data output pins. The levels required for the address and data inputs are TTL. Vcc is specified to be 6.25V  $\pm$  0.25V.

# VERY FAST AND RELIABLE PROGRAMMING ALGORITHM = PRESTO II

PRESTO II Programming Algorithm allows the whole array to be programmed with a guaranteed margin, in a typical time of less than 12 seconds. Programming with PRESTO II consists of applying a sequence of 100 microseconds program pulses to each byte until a correct verify occurs. During programming and verify operation, a MARGIN MODE circuit is automatically activated in order to guarantee that each cell is programmed with enough margin. No overprogram pulse is applied since the verify in MARGIN MODE provides necessary margin to each programmed cell.

## **DEVICE OPERATION (Continued)**

#### PROGRAM INHIBIT

Programming of multiple M27C1000s in parallel with different data is also easily accomplished. Except for CE, all like inputs including OE of the parallel M27C1000 may be common. A TTL low level pulse applied to a M27C1000's CE input, with PGM low and  $V_{PP}$  at 12.75V, will program that M27C1000. A high level CE input inhibits the other M27C1000s from being programmed. Vcc is specified to be 6.25V  $\pm$  0.25V

#### PROGRAM VERIFY

A verify (read) should be performed on the programmed bits to determine that they were correctly programmed. The verify is accomplished with CE and OE at  $V_{\rm IL}$ , PGM at  $V_{\rm IH}$ ,  $V_{\rm PP}$  at 12.75V and  $V_{\rm CC}$  at 6.25V.

## **ELECTRONIC SIGNATURE**

The Electronic Signature mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type, this mode is intended for use by programming equipment to automatically match the device to be programmed with its corresponding programming algorithm. This mode is functional in the 25°C ± 5°C ambient temperature range that is required when programming the M27C1000. To activate this mode, the programming equipment must force 11.5V to 12.5V on address line A9 of the M27C1000 with  $V_{PP} = V_{CC} = 5V$ . Two identifier bytes may then be sequenced from the device outputs by toggling address line A0 from V<sub>II</sub> to VIH. All other address lines must be held at VIL during Electronic Signature mode. Byte 0

 $(A0=V_{IL})$  represents the manufacturer code and byte 1 (A0=V\_{IH}) the device identifier code. For the SGS-THOMSON M27C1000, these two identifier bytes are given here below, and can be read out on outputs O0 to 07.

# ERASURE OPERATION (applies for UV EPROM)

The erasure characteristics of the M27C1000 is such that erasure begins when the cells are exposed to light with wavelengths shorter than approximately 4000 Å. It should be noted that sunlight and some type of fluorescent lamps have wavelengths in the 3000-4000 Å range. search shows that constant exposure to room level fluorescent lighting could erase a typical M27C1000 in about 3 years, while it would take approximately 1 week to cause erasure when exposed to direct sunlight. If the M27C1000 is to be exposed to these types of lighting conditions for extended periods of time, it is suggested that opaque labels be put over the M27C1000 window to prevent unintentional erasure. The recommended erasure procedure for the M27C1000 is exposure to short wave ultraviolet light which has wavelength 2537 Å. The integrated dose (i.e. UV intensity X exposure time) for erasure should be a minimum of 15 W-sec/cm<sup>2</sup>. The erasure time with this dosage is approximately 15 to 20 minutes using an ultraviolet lamp with 12000 μW/cm<sup>2</sup> power rating. The M27C1000 should be placed within 2.5 cm (1 inch) of the lamp tubes during the erasure. Some lamps have a filter on their tubes which should be removed before erasure.

## **ELECTRONIC SIGNATURE MODE**

| IDENTIFIER        |     |    |    |    | PII | NS |    |    |    |     |
|-------------------|-----|----|----|----|-----|----|----|----|----|-----|
| I DENTILLA        | A0  | 07 | O6 | O5 | 04  | О3 | 02 | 01 | 00 | Hex |
| MANUFACTURER CODE | VIL | 0  | 0  | 1  | 0   | 0  | 0  | 0  | 0  | 20  |
| DEVICE CODE       | ViH | 1  | 0  | 0  | 0   | 0  | 1  | 1  | 0  | 86  |

NOTE : A9 = 12V  $\pm$  0.5V ;  $\overline{\text{CE}}$  =  $\overline{\text{OE}}$  = V<sub>1L</sub> , A1 - A8, A10 - A16 = V<sub>1L</sub> ; V<sub>PP</sub> = V<sub>CC</sub> = 5V

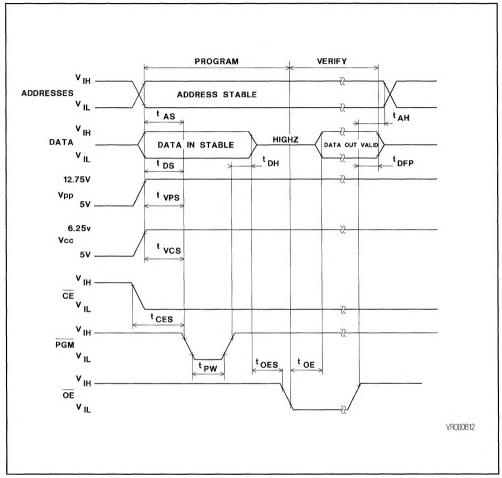
# PROGRAMMING OPERATION

 $(T_A = 25^{\circ}C \pm 5^{\circ}C, V_{CC}^{(1)} = 6.25V \pm 0.25V, V_{PP}^{(1)} = 12.75V \pm 0.25V)$ 

## DC AND OPERATING CHARACTERISTICS

| Symbol           | Parameter                                | Test Condition           | Va   | lues                 | Unit |
|------------------|------------------------------------------|--------------------------|------|----------------------|------|
|                  | raiametei                                | (see note 1)             | Min  | Max                  | Onn  |
| lu               | Input Current (All Inputs)               | VIN = VIL or VIH         |      | 10                   | μΑ   |
| VIL              | Input Low Level (All Inputs)             |                          | -0.1 | 0.8                  | ٧    |
| VIH              | Input High Level                         |                          | 2.0  | V <sub>CC</sub> +0.5 | ٧    |
| V <sub>OL</sub>  | Output Low Voltage During<br>Verify      | I <sub>OL</sub> = 2.1 mA |      | 0.45                 | ٧    |
| V <sub>OH</sub>  | Output High Voltage During<br>Verify     | I <sub>OH</sub> = -400µA | 2.4  |                      | ٧    |
| I <sub>CC2</sub> | V <sub>CC</sub> Supply Current           |                          |      | 50                   | mA   |
| I <sub>PP2</sub> | V <sub>PP</sub> Supply Current (program) | CE = V <sub>IL</sub>     |      | 50                   | mA   |
| V <sub>ID</sub>  | A9 Electronic Signature Voltage          |                          | 11.5 | 12.5                 | ٧    |

## **AC CHARACTERISTICS**

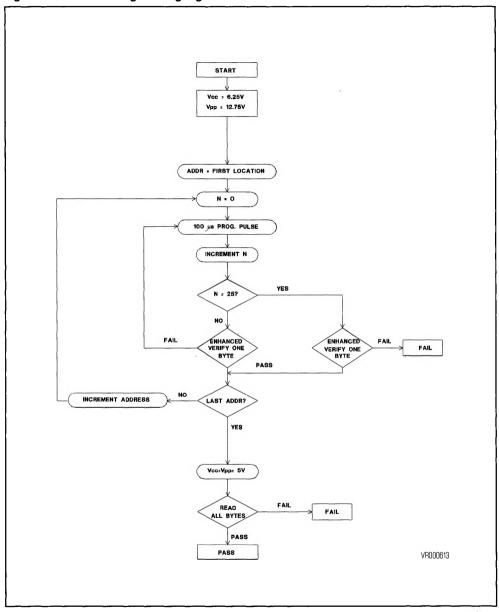

| Symbol              | Parameter                           | Test Condition | Va  | lues | Unit |
|---------------------|-------------------------------------|----------------|-----|------|------|
| Symbol              | Parameter                           | (see note 1)   | Min | Max  | Unit |
| tas                 | Address Setup Time                  |                | 2   |      | μs   |
| toes                | OE Setup Time                       |                | 2   |      | μs   |
| tos                 | Data Setup Time                     |                | 2   |      | μs   |
| tah                 | Address Hold Time                   |                | 0   |      | μѕ   |
| tон                 | Data Hold Time                      |                | 2   |      | μs   |
| t <sub>DFP(2)</sub> | Output Enable Output Float<br>Delay |                | 0   | 130  | ns   |
| tvps                | V <sub>PP</sub> Setup Time          |                | 2   |      | μs   |
| tvcs                | V <sub>CC</sub> Setup Time          |                | 2   |      | μs   |
| tces                | CE Setup Time                       |                | 2   |      | μs   |
| t <sub>PW</sub>     | PGM Initial Program Pulse<br>Width  |                | 95  | 105  | μs   |
| toe                 | Data Valid from OE                  |                |     | 100  | ns   |

NOTES: 1. Vcc must be applied simultaneously or before VPP and removed simultaneously or after VPP.

This parameter is only sampled and not 100 % tested. Output Float is defined as the point where data is no longer driven (see timing diagram).

## **PROGRAMMING OPERATION (Continued)**

## Figure 6: Programming Waveforms



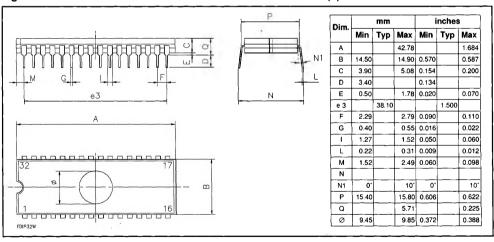

NOTES: 1. The input timing reference level is 0.8V for a  $V_{IL}$  and 2V for a  $V_{IH}$ .

 to and tope are characteristics of the device but must be accommodated by the programmer.
 When programming the M27C1000 a 0.1μF capacitor is required across V<sub>PP</sub> and GND to suppress spurious voltage transients which can damage the device.

## **PROGRAMMING OPERATION (Continued)**

## Figure 7: PRESTO II Programming Algorithm Flow Chart




## **ORDERING INFORMATION - UV EPROM**

| Part Number      | Access Time | Supply Voltage | Temp. Range    | Package  |
|------------------|-------------|----------------|----------------|----------|
| M27C1000 - 12XF1 | 120 ns      | 5V ± 5%        | 0°C to +70°C   | FDIP32-W |
| M27C1000 - 15XF1 | 150 ns      | 5V ± 5%        | 0°C to +70°C   | FDIP32-W |
| M27C1000 - 20XF1 | 200 ns      | 5V ± 5%        | 0°C to +70°C   | FDIP32-W |
| M27C1000 - 25XF1 | 250 ns      | 5V ± 5%        | 0°C to +70°C   | FDIP32-W |
| M27C1000 - 12F1  | 120 ns      | 5V ± 10%       | 0°C to +70°C   | FDIP32-W |
| M27C1000 - 15F1  | 150 ns      | 5V ± 10%       | 0°C to +70°C   | FDIP32-W |
| M27C1000 - 20F1  | 200 ns      | 5V ± 10%       | 0°C to +70°C   | FDIP32-W |
| M27C1000 - 25F1  | 250 ns      | 5V ± 10%       | 0°C to +70°C   | FDIP32-W |
| M27C1000 - 12XF6 | 120 ns      | 5V ± 5%        | -40°C to +85°C | FDIP32-W |
| M27C1000 - 15XF6 | 150 ns      | 5V ± 5%        | -40°C to +85°C | FDIP32-W |
| M27C1000 - 15F6  | 150 ns      | 5V ± 10%       | -40°C to +85°C | FDIP32-W |

NOTE: Consult your nearest SGS-THOMSON sales office for availability of other combination.

## PACKAGE MECHANICAL DATA

Figure 8: 32-PIN WINDOW CERAMIC DUAL IN LINE FRIT-SEAL (F)



## **ORDERING INFORMATION (OTP ROM)**

| Part Number    | Access Time | Supply Voltage | Temp. Range    | Package |
|----------------|-------------|----------------|----------------|---------|
| M27C1000-15XB1 | 150 ns      | 5V ± 5%        | 0°C to +70°C   | DIP32   |
| M27C1000-20XB1 | 200 ns      | 5V ± 5%        | 0°C to +70°C   | DIP32   |
| M27C1000-15B1  | 150 ns      | 5V ± 10%       | 0°C to +70°C   | DIP32   |
| M27C1000-20B1  | 200 ns      | 5V ± 10%       | 0°C to +70°C   | DIP32   |
| M27C1000-15XB6 | 150 ns      | 5V ± 5%        | -40°C to +85°C | DIP32   |
| M27C1000-15XC1 | 150 ns      | 5V ± 5%        | 0°C to +70°C   | PLCC32  |
| M27C1000-20XC1 | 200 ns      | 5V ± 5%        | 0°C to +70°C   | PLCC32  |
| M27C1000-15C1  | 150 ns      | 5V ± 10%       | 0°C to +70°C   | PLCC32  |
| M27C1000-20C1  | 200 ns      | 5V ± 10%       | 0°C to +70°C   | PLCC32  |
| M27C1000-15XC6 | 150 ns      | 5V ± 5%        | -40°C to +85°C | PLCC32  |

NOTE: Consult your nearest SGS-THOMSON sales office for availability of other combination.

# PACKAGE MECHANICAL DATA (Continued)

Figure 9 : PLASTIC DIL 32

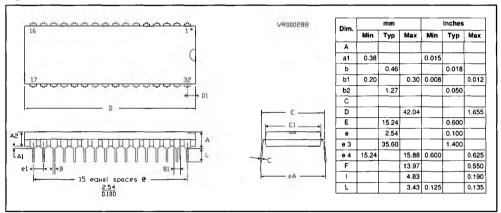
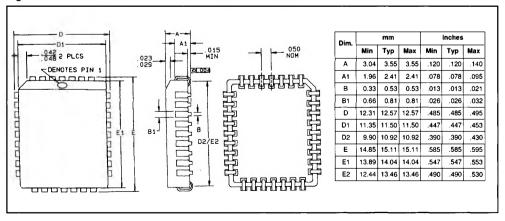




Figure 10: PLCC32-32-LEAD PLASTIC LEADED CHIP CARRIER

