MOS INTEGRATED CIRCUITS

2 x 8 CROSSPOINT MATRIX

- VERY LOW ON RESISTANCE
- HIGH CROSS-TALK AND OFF-STATE ISOLATION
- SERIAL SWITCH ADDRESSING, μ-PROCESSOR COMPATIBLE

The M089 and M099 are 2x8 crosspoint matrices consisting of 16 N-channel MOS transistors. Both devices are similar in operation, the only difference being that in the M099 the "all switches reset" function is implemented by a microprocessor command.

Both devices have been specially designed to provide switches with low cross-talk, high off-state isolation (both better than -90 dB) and low on-resistance.

ABSOLUTE MAXIMUM RATINGS*

., **			
V _{DD} ""	Supply voltage	-0.5 to 17	V
V ₁	Input voltage pins 4, 5, 12, 13	0.5 to 17	v
VIN-VOUT	Differential voltage across any disconnected switch	10	V
Ptot	Total power dissipation	640	mW
Top	Operating temperature range: for plastic	0 to 70	°C
	for ceramic	-40 to 70	°C
T _{stg}	Storage temperature range	-65 to 150	°C

* Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

** With respect to V_{SS} (GND) pin.

ORDERING NUMBERS:

- M089/M099 B1 for dual-in-line plastic package
- M089/M099 D1 for dual-in-line ceramic package
- M089/M099 F1 for dual-in-line ceramic package, frit seal

MECHANICAL DATA (dimensions in mm)

Dual-in-line ceramic package

PIN CONNECTIONS

Dual-in-line ceramic package frit seal

LOGIC DIAGRAM

1468 (AND STR

and the 29

See.

M 089 M 099

M099 BLOCK DIAGRAM

CIRCUIT DESCRIPTION

The M089 and M099 are capable of forming any combination of switch conditions in an 8x2 matrix. Each switch is individually set and a latch maintains it in its set condition.

The switch address and control bits are loaded serially into an internal shift register (5 bit for M089, 6 bit for M099) when inputs E_1 , and E_2 are low. The address bits in both matrices consist of: 3 input selection bits (X_0 - X_2) and a single output selection bit (Y_0). A fifth (control) bit (D) defines whether the chosen switch is to be opened or closed.

In the M099 a sixth bit (R) is an "all switch reset". Reset occurs on the low to high transition of the enable inputs when both D and R are zero.

During normal selection the R bit must be a 1.

M089 Shift Register Bit Allocation

M099 Shift Register Bit Allocation

0 X X X X	0
-----------	---

M099 Reset Word.

Data bits are clocked into the shift register on the high to low transition of the clock input (CP). If more than 5 (or 6 in the case of the M090) clock transmission are applied during loading of the shift register the last 5 (or 6) data bits are loaded into it. The status of the switch addressed changes on the low to high transition of one or both enable inputs.

-	Ē2	FUNCTION				
E1		M089	M099			
L	L	Data Load				
	L		addressed			
L	L	addressed switch	switch changed or			
L		cnanged	reset			

ENABLE INPUTS TRUTH TABLE

DATA BIT TRUTH TABLE

– M089 –			
Data	Switch status after enable transition		
L	disconnect		
н	connect		

DATA AND RESET BIT TRUTH TABLE

– M099 only –				
D R Switch status				
L	L	all switches reset		
н	L	no change		
L	н	addressed switch disconnected		
н	н	addressed switch connected		

DATA BITS TRUTH TABLE FOR SWITCH SELECTION

	^O 1 Y ₀ X ₂ X ₁ X ₀	0 ₂	03	04	05	0 ₆	07	0 ₈
IN A	1111	1011	1101	1001	1110	1010	1100	1000
IN B	0111	0011	0101	0001	0110	0010	0100	0000

For example to address the switch connecting IN A to ${\rm O}_5$ the shift register must be loaded with the code:

	M089	M099			
	D Y ₀ X ₂ X ₁ X ₀	D Y ₀ X ₂ X ₁ X ₀ R			
to connect	11110	111101			
to disconnect	01110	011101			

ELECTRICAL CHARACTERISTICS (T_{amb} = 0 to 70°C for M089/M099 B1; -40 to 70°C for M089/M099 F1, D1; V_{DD} = 14V to 16V unless otherwise specified)

Parameter			Test conditions	Min.	Тур.	Max.	Unit
R _{ON} *	ON-resistance		T_{amb} = 25°C V _i (A, B)= 3.5V V _{DD} = 14V I _{D(min)} = 10 mA		10	15	Ω
∆R _{ON}	ON-resistance variation in any package		$ \begin{array}{l} {T_{amb}} = 25^{\circ}{C} \\ {V_i} = 3.5{V} \\ {V_{DD}} = 14{V} \\ {I_D} = 10 \text{ mA} \end{array} $			± 2	%
IDD	Supply current					7	mA
I _{LI}	Input leakage	pins 4, 5 12, 13	V _i = 5V			1	μΑ
		nine 1 0	V _{iA} , V _{iB} = 4.5V V ₀₁ , V ₀₈ = 1.5V			0.2	μA
		pins 1,9	V _{iA} , V _{iB} = 6V V _{O1} , V _{O8} = 1.5V			1	μA
LO	Output leakage	pins 2, 6, 7	V ₀₁ , V ₀₈ = 4.5V V _i A, V _i B ⁼ 1.5V			0.2	μA
		8, 10, 14 15, 16	V ₀₁ , V ₀₈ = 6V V _i A, V _i B ⁼ 1.5V			1	μA
Viow	Logic 0 input level		All inputs	-0.3		0.8	v
V _{high}			All inputs	4.5		V _{DD}	V
ст	Cross-talk attenuation		See fig. 4	90	95		dB
10	Off isolation		See fig. 5	90	95		dB
f _{CL}	Maximum clock inp	ut frequency				1	MHz
TLG	Lag time Lead time		See fig. 6 for M089 See fig. 7 for M099	100			ns
TLD1				400			
TLD2				150			ns
T _{WR}	Write time					3	μs
tw	Clock pulse width			0.4		100	μs

* See fig. 1 and 2 for R_{ON} variation with temperature and V_{BIAS} .

Fig. 1 - R_{ON} derating vs. temperature typ.

Fig. 2 - R_{ON} derating vs. V_{BIAS}.

TEST CIRCUITS

Fig. 4 - Crosstalk measurements

Fig. 5 - Off isolation measurement

TIMING DIAGRAMS

Fig. 6 - M089 timing diagram

.

Fig. 7 - M099 timing diagram

