LH28F640BNHG-PTSL70

Synchronus Dual Work Flash Memory 64M (4M × 16)

(Model No.: LHF64N14)

Spec No.: FM02Y002

Issue Date: November 5, 2002

SPEC No.	FM	02 Y	7002	
ISSUE:	Nov.	5,	2002	

To;

PRELIMINARY SPECIFICATIONS

Product Type 64 M b i t Flash Memory

L H 2 8 F 6 4 0 B N H G — P T S L 7 0

Model No	(LHF64N14)
This device specific	cation is subject to change without notice.
* This specification	as contains 38 pages including the cover and appendix.
CUSTOMERS ACCEPTA	NCE
DATE:	
BY:	PRESENTED

BY:

REVIEWED BY:

PREPARED BY:

Product Development Dept. I Flash Memory Division **Integrated Circuits Group** SHARP CORPORATION

Dept. General Manager

LHF64N14

- Handle this document carefully for it contains material protected by international copyright law. Any reproduction, full or in part, of this material is prohibited without the express written permission of the company.
- When using the products covered herein, please observe the conditions written herein and the precautions outlined in the following paragraphs. In no event shall the company be liable for any damages resulting from failure to strictly adhere to these conditions and precautions.
 - (1) The products covered herein are designed and manufactured for the following application areas. When using the products covered herein for the equipment listed in Paragraph (2), even for the following application areas, be sure to observe the precautions given in Paragraph (2). Never use the products for the equipment listed in Paragraph (3).
 - Office electronics
 - Instrumentation and measuring equipment
 - Machine tools
 - Audiovisual equipment
 - Home appliance
 - Communication equipment other than for trunk lines
 - (2) Those contemplating using the products covered herein for the following equipment which demands high reliability, should first contact a sales representative of the company and then accept responsibility for incorporating into the design fail-safe operation, redundancy, and other appropriate measures for ensuring reliability and safety of the equipment and the overall system.
 - Control and safety devices for airplanes, trains, automobiles, and other transportation equipment
 - Mainframe computers
 - Traffic control systems
 - Gas leak detectors and automatic cutoff devices
 - Rescue and security equipment
 - Other safety devices and safety equipment, etc.
 - (3) Do not use the products covered herein for the following equipment which demands extremely high performance in terms of functionality, reliability, or accuracy.
 - Aerospace equipment
 - Communications equipment for trunk lines
 - Control equipment for the nuclear power industry
 - Medical equipment related to life support, etc.
 - (4) Please direct all queries and comments regarding the interpretation of the above three Paragraphs to a sales representative of the company.
- Please direct all queries regarding the products covered herein to a sales representative of the company.

CONTENTS

PAGE	PAGE
0.75mm pitch 56-Ball CSP Pinout 3	Frequency Configuration Settings 18
Pin Descriptions	Frequency Configuration 18
Simultaneous Operation Modes Allowed with Four Planes	Output Configuration
Memory Map 7	Read Sequence and Burst Length
Identifier Codes and OTP Address	Partition Configuration Register Definition 20
for Read Operation 8	Partition Configuration
Identifier Codes and OTP Address for Read Operation on Partition Configuration 8	1 Electrical Specifications
•	1.1 Absolute Maximum Ratings 21
OTP Block Address Map for OTP Program 9	1.2 Operating Conditions
Bus Operation 10	1.2.1 Capacitance
Command Definitions	1.2.2 AC Input/Output Test Conditions 22
Functions of Block Lock and Block Lock-Down 13	1.2.3 DC Characteristics
Block Locking State Transitions upon Command Write	1.2.4 AC Characteristics - Read-Only Operations
Block Locking State Transitions upon WP# Transition	1.2.5 AC Characteristics - Write Operations
Status Register Definition	1.2.6 Reset Operations
Extended Status Register Definition	
Read Configuration Register Definition	1.2.7 Block Erase, Advanced Factory Program, (Page Buffer) Program and OTP Program Performance

LH28F640BNHG-PTSL70 64Mbit (4Mbit×16) Synchronous Dual Work Flash MEMORY

- 64M density with 16Bit I/O Interface
- High Performance Reads
 - 70/20ns 8-Word Page Mode
 - 66MHz Synchronous Burst Mode
- Configurative 4-Plane Dual Work
 - Flexible Partitioning
 - Read operations during Block Erase or (Page Buffer) Program
 - Status Register for Each Partition
- Low Power Operation
 - 1.7V Read and Write Operations
 - \bullet V_{CCO} for Input/Output Power Supply Isolation
 - Automatic Power Savings Mode Reduces I_{CCR} in Static Mode
- Enhanced Code + Data Storage
 - 5µs Typical Erase/Program Suspends
- OTP (One Time Program) Block
 - 4-Word Factory-Programmed Area
 - 4-Word User-Programmable Area
- High Performance Program with Page Buffer
 - 16-Word Page Buffer
 - 5µs/Word (Typ.) at 12V V_{PP}
- Operating Temperature -40°C to +85°C
- Advanced Factory Programming Mode
 - 3.5µs/Word (Typ.)

- Flexible Blocking Architecture
 - Eight 4K-word Parameter Blocks
 - One-hundred and twenty-seven 32K-word Main Blocks
 - Top Parameter Location
- Enhanced Data Protection Features
 - Individual Block Lock and Block Lock-Down with Zero-Latency
 - All blocks are locked at power-up or device reset.
 - Absolute Protection with V_{PP}≤V_{PPLK}
 - Block Erase, Advanced Factory Program,
 (Page Buffer) Word Program Lockout during Power Transitions
- Automated Erase/Program Algorithms
 - 1.8V Low-Power 22µs/Word (Typ.) Programming
 - 12V No Glue Logic 9μs/Word (Typ.)
 Production Programming and 0.5s Erase (Typ.)
- Cross-Compatible Command Support
 - Basic Command Set
 - Common Flash Interface (CFI)
- Extended Cycling Capability
 - Minimum 100,000 Block Erase Cycles
- 0.75mm pitch 56-Ball CSP
- ETOX^{TM*} Flash Technology
- Not designed or rated as radiation hardened
- CMOS Process (P-type silicon substrate)

The product, which is 4-Plane Synchronous Dual Work (Simultaneous Read while Erase/Program) Flash memory, is a low power, high density, low cost, nonvolatile read/write storage solution for a wide range of applications. The product can operate at V_{CC} =1.7V-1.95V and V_{PP} =0.9V-1.95V or 11.7V-12.3V. Its low voltage operation capability greatly extends battery life for portable applications.

The product provides high performance asynchronous page mode and synchronous burst mode. It allows code execution directly from Flash, thus eliminating time consuming wait states. Furthermore, its newly configurative partitioning architecture allows flexible dual work operation.

The memory array block architecture utilizes Enhanced Data Protection features and provides separate Parameter and Main Blocks that provide maximum flexibility for safe nonvolatile code and data storage.

Fast program capability is provided through the use of high speed Page Buffer Program.

Special OTP (One Time Program) block provides an area to store permanent code such as an unique number.

* ETOX is a trademark of Intel Corporation.

0.75mm pitch 56-BALL CSP PINOUT 11mm x 8mm

TOP VIEW 1 2 3 4 5 6 7 (OE#) A_2 (GND DQ_8 CE# (DQ_0) В $\left(DQ_{1}\right)$ (WP#) C A19 DQ9 (RST#) (WE#) (DQ_{12}) DQ_2 (DQ_{10}) DQ_3 D V_{PP} $\left(\mathrm{DQ_{4}}\right)$ (CLK) (ADV#) A16 (DQ_{11}) Vcc E V_{CC} (GND) (WAIT) DQ_6 (DQ_{13}) DQ5 A20 A21 F A14 (DQ_{15}) (DQ_{14}) \mathbf{G} **A**9 A10 (GND (Vccq) (DQ_7) (GND) Η

Figure 1. 0.75mm pitch 56-Ball CSP Pinout

Table 1. Pin Descriptions

Symbol	Type	Name and Function
A ₀ -A ₂₁	INPUT	ADDRESS INPUTS: Inputs for addresses. 64M: A ₀ -A ₂₁
DQ ₀ -DQ ₁₅	INPUT/ OUTPUT	DATA INPUTS/OUTPUTS: Inputs data and commands during CUI (Command User Interface) write cycles, outputs data during memory array, status register, query code, identifier code and read/partition configuration register code reads. Data pins float to high-impedance (High Z) when the chip or outputs are deselected. Data is internally latched during an erase or program cycle.
CE#	INPUT	CHIP ENABLE: Activates the device's control logic, input buffers, decoders and sense amplifiers. CE#-high (V_{IH}) deselects the device and reduces power consumption to standby levels.
CLK	INPUT	CLOCK: Synchronizes the memory to the system bus operating frequency in synchronous burst mode. The first rising (or falling if RCR.6 is "0") edge latches the address when ADV# is V _{IL} or upon a rising ADV# edge. This is used only for synchronous burst mode.
ADV#	INPUT	ADDRESS VALID: Addresses are input to the memory when ADV# is low (V _{IL}). Addresses are latched on ADV#'s rising edge during read and write operations.
RST#	INPUT	RESET: When low (V_{IL}) , RST# resets internal automation and inhibits write operations which provides data protection. RST#-high (V_{IH}) enables normal operation. After power-up or reset mode, the device is automatically set to asynchronous read array mode. RST# must be low during power-up/down.
OE#	INPUT	OUTPUT ENABLE: Gates the device's outputs during a read cycle.
WE#	INPUT	WRITE ENABLE: Controls writes to the CUI and array blocks. Addresses and data are latched on the rising edge of CE# or WE# (whichever goes high first).
WP#	INPUT	WRITE PROTECT: When WP# is V_{IL} , locked-down blocks cannot be unlocked. Erase or program operation can be executed to the blocks which are not locked and not locked-down. When WP# is V_{IH} , lock-down is disabled.
WAIT	OUTPUT	WAIT: Indicates data valid in synchronous burst modes. The read configuration register bit 10 (RCR.10, WT) determines its polarity. With CE# at V_{IL} , WAIT's active output is V_{OL} or V_{OH} . WAIT is High-Z if CE# is V_{IH} . WAIT is not gated by OE#. WAIT is used only for synchronous burst mode.
V _{PP}	INPUT	MONITORING POWER SUPPLY VOLTAGE: V_{PP} is not used for power supply pin. With $V_{PP} \le V_{PPLK}$, block erase, advanced factory program, (page buffer) program or OTP program cannot be executed and should not be attempted. Applying $12V\pm0.3V$ to V_{PP} provides fast erasing or fast programming mode. In this mode, V_{PP} is power supply pin. Applying $12V\pm0.3V$ to V_{PP} during erase/program can only be done for a maximum of 1,000 cycles on each block. V_{PP} may be connected to $12V\pm0.3V$ for a total of 80 hours maximum. Use of this pin at $12V$ beyond these limits may reduce block cycling capability or cause permanent damage.

Table 1. Pin Descriptions (Continued)

Symbol	Туре	Name and Function
V _{CC}	SUPPLY	DEVICE POWER SUPPLY (1.7V-1.95V): With $V_{CC} \le V_{LKO}$, all write attempts to the flash memory are inhibited. Device operations at invalid V_{CC} voltage (see DC Characteristics) produce spurious results and should not be attempted.
V _{CCQ}	SUPPLY	INPUT/OUTPUT POWER SUPPLY (1.7V-1.95V): Power supply for all input/output pins.
GND	SUPPLY	GROUND: Do not float any ground pins.
NC		NO CONNECT: Lead is not internally connected; it may be driven or floated.

Table 2. Simultaneous Operation Modes Allowed with Four Planes^(1, 2)

		THEN THE MODES ALLOWED IN THE OTHER PARTITION IS:									
IF ONE PARTITION IS:	Read Array	Read ID/OTP	Read Status	Read Query	Word Program	Page Buffer Program	OTP Program	Block Erase	Advanced Factory Program	Program Suspend	Block Erase Suspend
Read Array	X	X	X	X	X	X		X		X	X
Read ID/OTP	X	X	X	X	X	X		X		X	X
Read Status	X	X	X	X	X	X	X	X	X	X	X
Read Query	X	X	X	X	X	X		X		X	X
Word Program	X	X	X	X							X
Page Buffer Program	X	X	X	X							X
OTP Program			X								
Block Erase	X	X	X	X							
Advanced Factory Program			X								
Program Suspend	X	X	X	X							X
Block Erase Suspend	X	X	X	X	X	X				X	

NOTES:

- 1. "X" denotes the operation available.
- 2. Configurative Partition Dual Work Restrictions:

Status register reflects partition state, not WSM (Write State Machine) state - this allows a status register for each partition. Only one partition can be erased or programmed at a time - no command queuing.

Commands must be written to an address within the block targeted by that command.

It is not possible to do burst reads that cross partition boundaries.

	BLOCK NUMBER	ADDRESS RANGE			
	134 4K-WORD	3FF000H - 3FFFFFH			
	133 4K-WORD	3FE000H - 3FEFFFH			
	132 4K-WORD	3FD000H - 3FDFFFH			
	131 4K-WORD	3FC000H - 3FCFFFH			
	130 4K-WORD	3FB000H - 3FBFFFH			
	129 4K-WORD 128 4K-WORD	3FA000H - 3FAFFFH 3F9000H - 3F9FFFH		BLOCK NUMBER	ADDRESS RANGE
	127 4K-WORD	3F8000H - 3F8FFFH		63 32K-WORD	1F8000H - 1FFFFFH
	126 32K-WORD	3F0000H - 3F7FFFH		62 32K-WORD	1F0000H - 1F7FFFH
	125 32K-WORD	3E8000H - 3EFFFFH		61 32K-WORD	1E8000H - 1EFFFFH
回	124 32K-WORD	3E0000H - 3E7FFFH		60 32K-WORD	1E0000H - 1E7FFFH
PLANE)	123 32K-WORD 122 32K-WORD	3D8000H - 3DFFFFH 3D0000H - 3D7FFFH		59 32K-WORD 58 32K-WORD	1D8000H - 1DFFFFH 1D0000H - 1D7FFFH
Ľ	121 32K-WORD	3C8000H - 3CFFFFH		57 32K-WORD	1C8000H - 1CFFFFH
	120 32K-WORD	3C0000H - 3C7FFFH		56 32K-WORD	1C0000H - 1C7FFFH
黑	119 32K-WORD	3B8000H - 3BFFFFH		55 32K-WORD	1B8000H - 1BFFFFH
(PARAMETER	118 32K-WORD	3B0000H - 3B7FFFH	世	54 32K-WORD	1B0000H - 1B7FFFH
Œ	117 32K-WORD	3A8000H - 3AFFFFH	[4	53 32K-WORD	1A8000H - 1AFFFFH 1A0000H - 1A7FFFH
\$	116 32K-WORD 115 32K-WORD	3A0000H - 3A7FFFH 398000H - 39FFFFH		52 32K-WORD 51 32K-WORD	198000H - 19FFFFH
2	114 32K-WORD	390000H - 397FFFH	12	50 32K-WORD	190000H - 197FFFH
PA	113 32K-WORD	388000H - 38FFFFH	2	49 32K-WORD	188000H - 18FFFFH
	112 32K-WORD	380000H - 387FFFH	Ö	48 32K-WORD	180000H - 187FFFH
PLANE3	111 32K-WORD	378000H - 37FFFFH	(UNIFORM PLANE)	47 32K-WORD	178000H - 17FFFFH
13	110 32K-WORD 109 32K-WORD	370000H - 377FFFH 368000H - 36FFFFH	15	46 32K-WORD 45 32K-WORD	170000H - 177FFFH 168000H - 16FFFFH
ΓŢ	109 32K-WORD	360000H - 367FFFH		44 32K-WORD	160000H - 167FFFH
Ъ	107 32K-WORD	358000H - 35FFFFH	PLANE1	43 32K-WORD	158000H - 15FFFFH
	106 32K-WORD	350000H - 357FFFH	13	42 32K-WORD	150000H - 157FFFH
	105 32K-WORD	348000H - 34FFFFH	17	41 32K-WORD	148000H - 14FFFFH
	104 32K-WORD	340000H - 347FFFH		40 32K-WORD 39 32K-WORD	140000H - 147FFFH
	103 32K-WORD 102 32K-WORD	338000H - 33FFFFH 330000H - 337FFFH		39 32K-WORD 38 32K-WORD	138000H - 13FFFFH 130000H - 137FFFH
	101 32K-WORD	328000H - 32FFFFH		37 32K-WORD	128000H - 12FFFFH
	100 32K-WORD	320000H - 327FFFH		36 32K-WORD	120000H - 127FFFH
	99 32K-WORD	318000H - 31FFFFH		35 32K-WORD	118000H - 11FFFFH
	98 32K-WORD	310000H - 317FFFH		34 32K-WORD	110000H - 117FFFH
	97 32K-WORD 96 32K-WORD	308000H - 30FFFFH 300000H - 307FFFH		33 32K-WORD 32 32K-WORD	108000H - 10FFFFH 100000H - 107FFFH
_	70 02IL ((01L)	150000011 50/11111		32 3211 W 01tb	10000011 10/11111
	95 32K-WORD	2F8000H - 2FFFFFH		31 32K-WORD	0F8000H - 0FFFFFH
	94 32K-WORD	2F0000H - 2F7FFFH		30 32K-WORD	0F0000H - 0F7FFFH
	93 32K-WORD	2E8000H - 2EFFFFH		29 32K-WORD	0E8000H - 0EFFFFH
	92 32K-WORD	2E0000H - 2E7FFFH		28 32K-WORD	0E0000H - 0E7FFFH
1	91 32K-WORD 90 32K-WORD	2D8000H - 2DFFFFH 2D0000H - 2D7FFFH		27 32K-WORD 26 32K-WORD	0D8000H - 0DFFFFH 0D0000H - 0D7FFFH
	89 32K-WORD	2C8000H - 2CFFFFH		25 32K-WORD	0C8000H - 0CFFFFH
	88 32K-WORD	2C0000H - 2C7FFFH		24 32K-WORD	0C0000H - 0C7FFFH
	87 32K-WORD	2B8000H - 2BFFFFH	_	23 32K-WORD	0B8000H - 0BFFFFH
国 国	86 32K-WORD	2B0000H - 2B7FFFH	PLANE)	22 32K-WORD	0B0000H - 0B7FFFH
	85 32K-WORD	2A8000H - 2AFFFFH 2A0000H - 2A7FFFH	\$	21 32K-WORD 20 32K-WORD	0A8000H - 0AFFFFH 0A0000H - 0A7FFFH
ΙŽ	84 32K-WORD 83 32K-WORD	298000H - 29FFFFH	Ľ	19 32K-WORD	098000H - 09FFFFH
(UNIFORM PLANE	82 32K-WORD	290000H - 297FFFH	1.	18 32K-WORD	090000H - 097FFFH
I⋛	81 32K-WORD	288000H - 28FFFFH	(UNIFORM	17 32K-WORD	088000H - 08FFFFH
lö	80 32K-WORD	280000H - 287FFFH	ΙĠ	16 32K-WORD	080000H - 087FFFH
臣	79 32K-WORD	278000H - 27FFFFH	ΙĒ	15 32K-WORD	078000H - 07FFFFH
ΙZ	78 32K-WORD 77 32K-WORD	270000H - 277FFFH 268000H - 26FFFFH	<u>Z</u>	14 32K-WORD 13 32K-WORD	070000H - 077FFFH 068000H - 06FFFFH
	76 32K-WORD	260000H - 267FFFH		12 32K-WORD	060000H - 067FFFH
E2	75 32K-WORD	258000H - 25FFFFH	임	11 32K-WORD	058000H - 05FFFFH
PLANE2	74 32K-WORD	250000H - 257FFFH	PLANE0	10 32K-WORD	050000H - 057FFFH
[4	73 32K-WORD	248000H - 24FFFFH	 .₹	9 32K-WORD	048000H - 04FFFFH
\mathbf{F}	72 32K-WORD	240000H - 247FFFH	$_{\rm II}$	8 32K-WORD 7 32K-WORD	040000H - 047FFFH 038000H - 03FFFFH
	71 32K-WORD 70 32K-WORD	238000H - 23FFFFH 230000H - 237FFFH		7 32K-WORD 6 32K-WORD	030000H - 037FFFH
1	69 32K-WORD	228000H - 22FFFFH		5 32K-WORD	028000H - 02FFFFH
1	68 32K-WORD	220000H - 227FFFH		4 32K-WORD	020000H - 027FFFH
1	67 32K-WORD	218000H - 21FFFFH		3 32K-WORD	018000H - 01FFFFH
1	66 32K-WORD	210000H - 217FFFH		2 32K-WORD	010000H - 017FFFH 008000H - 00FFFFH
1	65 32K-WORD 64 32K-WORD	208000H - 20FFFFH 200000H - 207FFFH		1 32K-WORD 0 32K-WORD	000000H - 007FFFH
				- 22IX- 11 OIVD	

Figure 2. Memory Map (Top Parameter)

Table 3. Identifier Codes and OTP Address for Read Operation

	Code	Address [A ₁₅ -A ₀]	Data [DQ ₁₅ -DQ ₀]	Notes
Manufacturer Code	Manufacturer Code	0000Н	00B0H	1
Device Code	Top Parameter Device Code	0001H	00BAH	1, 2
Block Lock Configuration	Block is Unlocked		$DQ_0 = 0$	3
Code	Block is Locked Block Address		$DQ_0 = 1$	3
	Block is not Locked-Down	+ 2	$DQ_1 = 0$	3
	Block is Locked-Down		$DQ_1 = 1$	3
Device Configuration Code	Read Configuration Register	0005H	RCRC	1, 4
	Partition Configuration Register	0006H	PCRC	1, 5
OTP	OTP Lock	0080H	OTP-LK	1, 6
	OTP	0081-0088H	OTP	1, 7

NOTES:

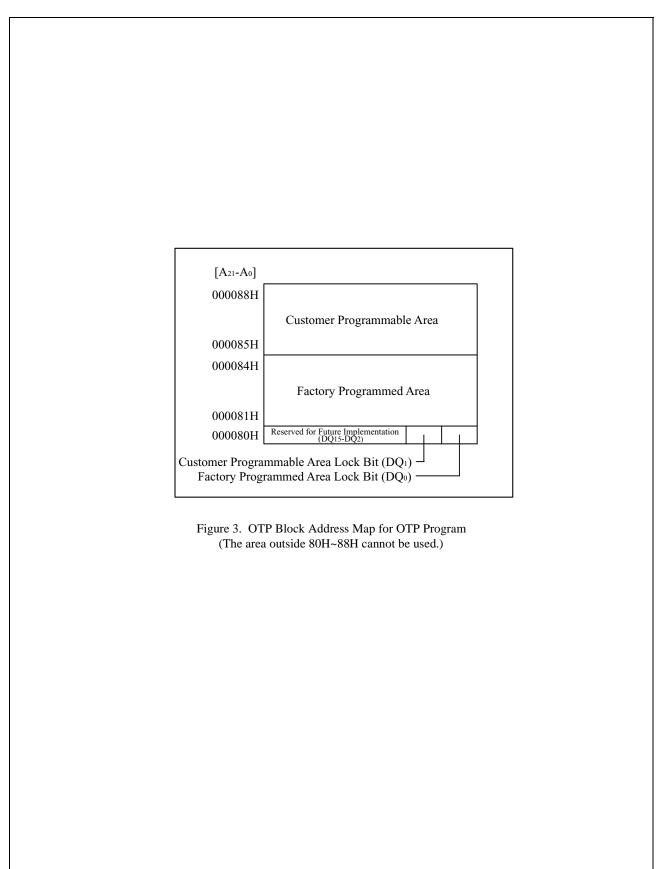

- 1. The address A_{21} - A_{16} are shown in below table for reading the manufacturer code, device code, device configuration code and OTP data.
- 2. Top parameter device has its parameter blocks in the plane3 (The highest address).
- 3. Block Address = The beginning location of a block address within the partition to which the Read Identifier Codes/OTP command (90H) has been written. DQ₁₅-DQ₂ are reserved for future implementation.
- 4. RCRC=Read Configuration Register Code.
- 5. PCRC=Partition Configuration Register Code.
- 6. OTP-LK=OTP Block Lock configuration.
- 7. OTP=OTP Block data.

Table 4. Identifier Codes and OTP Address for Read Operation on Partition Configuration⁽¹⁾ (64M-bit device)

Partition C	Configuration I	Register (2)	Address (64M-bit device)
PCR.10	PCR.9	PCR.8	$[A_{21}-A_{16}]$
0	0	0	00H
0	0	1	00H or 10H
0	1	0	00H or 20H
1	0	0	00H or 30H
0	1	1	00H or 10H or 20H
1	1	0	00H or 20H or 30H
1	0	1	00H or 10H or 30H
1	1	1	00H or 10H or 20H or 30H

- 1. The address to read the identifier codes or OTP data is dependent on the partition which is selected when writing the Read Identifier Codes/OTP command (90H).
- 2. Refer to Table 15 for the partition configuration register.

LHF64N14 10

Table 5. Bus Operation^(1, 2)

Mode	Notes	RST#	CE#	OE#	WE#	ADV#	WP#	Address	V_{PP}	DQ ₀₋₁₅	WAIT
Read Arra;y	6	V _{IH}	V _{IL}	V _{IL}	V _{IH}	V _{IL}	X	X	X	D _{OUT}	See NOTE 8
Output Disable		V _{IH}	V _{IL}	V _{IH}	V _{IH}	X	X	X	X	High Z	$V_{\rm IL}$ or $V_{\rm IH}$
Standby		V_{IH}	V _{IH}	X	X	X	X	X	X	High Z	High Z
Reset	3	V_{IL}	X	X	X	X	X	X	X	High Z	High Z
Read Identifier Codes/OTP	6	V _{IH}	V _{IL}	V _{IL}	V _{IH}	V _{IL}	X	See Table 3 and Table 4	X	See Table 3 and Table 4	V _{IL} or V _{IH}
Read Query	6,7	V _{IH}	V _{IL}	V _{IL}	V _{IH}	V _{IL}	X	See Appendix	X	See Appendix	V _{IL} or V _{IH}
Write	4,5,6	V_{IH}	V_{IL}	V_{IH}	$V_{\rm IL}$	V_{IL}	X	X	X	D _{IN}	V_{IL} or V_{IH}

- 1. Refer to DC Characteristics. When $V_{PP} \le V_{PPLK}$, memory contents can be read, but cannot be altered. 2. X can be V_{IL} or V_{IH} for control pins and addresses, and V_{PPLK} or $V_{PPH1/2}$ for V_{PP} See DC Characteristics for V_{PPLK} and V_{PPH1/2} voltages.

 3. RST# at GND±0.2V ensures the lowest power consumption.
- 4. Command writes involving block erase, (page buffer) program or OTP program are reliably executed when V_{PP}=V_{PPH1/2} and V_{CC}=1.7V-1.95V.

 Command writes involving advanced factory program are reliably executed when V_{PP}=V_{PPH2} and V_{CC}=1.7V-1.95V.
- 5. Refer to Table 6 for valid D_{IN} during a write operation.6. Never hold OE# low and WE# low at the same timing.
- 7. Refer to Appendix of LH28F640BN series for more information about query code.
- 8. WAIT indicates data valid in synchronous burst modes. WAIT is used only for synchronous burst mode.

Table 6. Command Definitions⁽¹¹⁾

	Bus		l	First Bus Cyc	ele	Second Bus Cycle			
Command	Cycles Req'd	Notes	Oper ⁽¹⁾	Addr ⁽²⁾	Data	Oper ⁽¹⁾	Addr ⁽²⁾	Data ⁽³⁾	
Read Array	1		Write	PA	FFH				
Read Identifier Codes/OTP	≥ 2	4	Write	PA	90H	Read	IA or OA	ID or OD	
Read Query	≥ 2	4	Write	PA	98H	Read	QA	QD	
Read Status Register	2		Write	PA	70H	Read	PA	SRD	
Clear Status Register	1		Write	PA	50H				
Block Erase	2	5	Write	BA	20H	Write	BA	D0H	
Advanced Factory Program	≥ 2	5,9	Write	WA0	30H	Write	WA0	D0H	
Program	2	5,6	Write	WA	40H or 10H	Write	WA	WD	
Page Buffer Program	≥4	5,7	Write	WA	E8H	Write	WA	N-1	
Block Erase and (Page Buffer) Program Suspend	1	8,9	Write	PA	ВОН				
Block Erase and (Page Buffer) Program Resume	1	8,9	Write	PA	D0H				
Set Block Lock Bit	2		Write	BA	60H	Write	BA	01H	
Clear Block Lock Bit	2	10	Write	BA	60H	Write	BA	D0H	
Set Block Lock-down Bit	2		Write	BA	60H	Write	BA	2FH	
OTP Program	2	9	Write	OA	СОН	Write	OA	OD	
Set Read Configuration Register	2		Write	RCRC	60H	Write	RCRC	03H	
Set Partition Configuration Register	2		Write	PCRC	60H	Write	PCRC	04H	

- 1. Bus operations are defined in Table 5.
- 2. All addresses which are written at the first bus cycle should be the same as the addresses which are written at the second bus cycle.
 - X=Any valid address within the device.
 - PA=Address within the selected partition.
 - IA=Identifier codes address (See Table 3 and Table 4).
 - QA=Query codes address. Refer to Appendix of LH28F640BN series for details.
 - BA=Address within the block being erased, set/cleared block lock bit or set block lock-down bit.
 - WA=Address of memory location for the Program command or the first address for the Page Buffer Program command.
 - WA0=First address for the Advanced Factory Program command.
 - OA=Address of OTP block to be read or programmed (See Figure 3).
 - RCRC=Read configuration register code presented on the addresses A₀-A₁₅.
 - PCRC=Partition configuration register code presented on the address A₀-A₁₅.
- 3. ID=Data read from identifier codes. (See Table 3 and Table 4).
 - QD=Data read from query database. Refer to Appendix of LH28F640BN series for details.
 - SRD=Data read from status register. See Table 10 and Table 11 for a description of the status register bits.
 - WD=Data to be programmed at location WA. Data is latched on the rising edge of WE# or CE# (whichever goes high first) during command write cycles.
 - OD=Data within OTP block. Data is latched on the rising edge of WE# or CE# (whichever goes high first) during command write cycles.
 - N-1=N is the number of the words to be loaded into a page buffer.
- 4. Following the Read Identifier Codes/OTP command, read operations access manufacturer code, device code, block lock configuration code, read configuration register code, partition configuration register code and the data within OTP block (See Table 3 and Table 4).
 - The Read Query command is available for reading CFI (Common Flash Interface) information.

- 5. Block erase, advanced factory program or (page buffer) program cannot be executed when the selected block is locked. Unlocked block can be erased or programmed when RST# is V_{IH} .
- 6. Either 40H or 10H are recognized by the CUI (Command User Interface) as the program setup.
- 7. Following the third bus cycle, input the program sequential address and write data of "N" times. Finally, input the any valid address within the target block to be programmed and the confirm command (D0H). Refer to Appendix of LH28F640BN series for details.
- 8. If the program operation in one partition is suspended and the erase operation in other partition is also suspended, the suspended program operation should be resumed first, and then the suspended erase operation should be resumed next.
- 9. Advanced factory program and OTP program operations can not be suspended. The OTP Program command can not be accepted while the block erase operation is being suspended.
- 10. Following the Clear Block Lock Bit command, block which is not locked-down is unlocked when WP# is V_{IL}. When WP# is V_{IH}, lock-down bit is disabled and the selected block is unlocked regardless of lock-down configuration.
- 11. Commands other than those shown above are reserved by SHARP for future device implementations and should not be used.

		(2)			
State	WP#	DQ ₁ ⁽¹⁾	$DQ_0^{(1)}$	State Name	Erase/Program Allowed (2)
[000]	0	0	0	Unlocked	Yes
[001] ⁽³⁾	0	0	1	Locked	No
[011]	0	1	1	Locked-down	No
[100]	1	0	0	Unlocked	Yes
[101] ⁽³⁾	1	0	1	Locked	No
[110] ⁽⁴⁾	1	1	0	Lock-down Disable	Yes
[111]	1	1	1	Lock-down Disable	No

Table 7. Functions of Block Lock⁽⁵⁾ and Block Lock-Down

NOTES:

- 1. $DQ_0=1$: a block is locked; $DQ_0=0$: a block is unlocked. $DQ_1=1$: a block is locked-down; $DQ_1=0$: a block is not locked-down.
- 2. Erase and program are general terms, respectively, to express: block erase, advanced factory program and (page buffer) program operations.
- 3. At power-up or device reset, all blocks default to locked state and are not locked-down, that is, [001] (WP#=0) or [101] (WP#=1), regardless of the states before power-off or reset operation.
- 4. When WP# is driven to $V_{\rm IL}$ in [110] state, the state changes to [011] and the blocks are automatically locked.
- 5. OTP (One Time Program) block has the lock function which is different from those described above.

Current State				Result after Lock Command Written (Next State)			
State	WP#	DQ ₁	DQ_0	Set Lock ⁽¹⁾	Clear Lock ⁽¹⁾	Set Lock-down ⁽¹⁾	
[000]	0	0	0	[001]	No Change	[011] ⁽²⁾	
[001]	0	0	1	No Change ⁽³⁾	[000]	[011]	
[011]	0	1	1	No Change	No Change	No Change	
[100]	1	0	0	[101]	No Change	[111] ⁽²⁾	
[101]	1	0	1	No Change	[100]	[111]	
[110]	1	1	0	[111]	No Change	[111] ⁽²⁾	
[111]	1	1	1	No Change	[110]	No Change	

Table 8. Block Locking State Transitions upon Command Write⁽⁴⁾

- "Set Lock" means Set Block Lock Bit command, "Clear Lock" means Clear Block Lock Bit command and "Set Lock-down" means Set Block Lock-Down Bit command.
- 2. When the Set Block Lock-Down Bit command is written to the unlocked block (DQ $_0$ =0), the corresponding block is locked-down and automatically locked at the same time.
- 3. "No Change" means that the state remains unchanged after the command written.
- 4. In this state transitions table, assumes that WP# is not changed and fixed V_{IL} or V_{IH} .

LHF64N14 14

Table 9. Block Locking State Transitions upon WP# Transition⁽⁴⁾

Description Chate		Current S	State		Result after WP# Transition (Next State)		
Previous State	State	WP#	DQ ₁	DQ_0	WP#=0→1 ⁽¹⁾	WP#=1→0 ⁽¹⁾	
-	[000]	0	0	0	[100]	-	
-	[001]	0	0	1	[101]	-	
[110] ⁽²⁾	[011]	0	1	1	[110]	-	
Other than [110] ⁽²⁾	[011]				[111]	-	
-	[100]	1	0	0	-	[000]	
-	[101]	1	0	1	-	[001]	
-	[110]	1	1	0	-	[011] ⁽³⁾	
-	[111]	1	1	1	-	[011]	

- 1. "WP#=0 \rightarrow 1" means that WP# is driven to V_{IH} and "WP#=1 \rightarrow 0" means that WP# is driven to
- V_{IL} .

 2. State transition from the current state [011] to the next state depends on the previous state.

 3. When WP# is driven to V_{IL} in [110] state, the state changes to [011] and the blocks are automatically locked.
- 4. In this state transitions table, assumes that lock configuration commands are not written in previous, current and next state.

Table 10. Status Register Definition							
R	R	R	R	R	R	R	R
15	14	13	12	11	10	9	8
WSMS	BESS	BES	PBPAFPOPS	VPPS	PBPSS	DPS	PPES
7	6	5	4	3	2	1	0
SR.15 - SR.8 = RESERVED FOR FUTURE					NOT	ΓES:	

SR.15 - SR.8 = RESERVED FOR FUTURE ENHANCEMENTS (R)

SR.7 = WRITE STATE MACHINE STATUS (WSMS)

1 = Ready

0 = Busy

SR.6 = BLOCK ERASE SUSPEND STATUS (BESS)

1 = Block Erase Suspended

0 = Block Erase in Progress/Completed

SR.5 = BLOCK ERASE STATUS (BES)

1 = Error in Block Erase

0 = Successful Block Erase

SR.4 = (PAGE BUFFER) PROGRAM, ADVANCED FACTORY PROGRAM AND OTP PROGRAM STATUS (PBPAFPOPS)

1 = Error in (Page Buffer) Program, Advanced Factory Program or OTP Program

0 = Successful (Page Buffer) Program, Advanced Factory Program or OTP Program

 $SR.3 = V_{PP} STATUS (VPPS)$

 $1 = V_{PP}$ LOW Detect, Operation Abort

 $0 = V_{PP} OK$

SR.2 = (PAGE BUFFER) PROGRAM SUSPEND STATUS (PBPSS)

1 = (Page Buffer) Program Suspended

 $0 = (Page\ Buffer)\ Program\ in\ Progress/Completed$

SR.1 = DEVICE PROTECT STATUS (DPS)

1 = Erase or Program Attempted on a Locked Block, Operation Abort

0 = Unlocked

SR.0 = PARTITION PROGRAM AND ERASE STATUS (PPES)

1 = Another Partition is busy. AFP: Program or Verify busy.

0 = Depending on status of SR.7.

The addressed partition is busy or no partition is busy.

AFP: Program or Verify done, AFP ready.

Status Register indicates the status of the partition, not WSM (Write State Machine). Even if the SR.7 is "1", the WSM may be occupied by the other partition when the device is set to 2, 3 or 4 partitions configuration.

Check SR.7 to determine block erase, advanced factory program, (page buffer) program or OTP program completion. SR.6 - SR.1 are invalid while SR.7="0".

If both SR.5 and SR.4 are "1"s after a block erase, advanced factory program, (page buffer) program, set/clear block lock bit, set block lock-down bit, set read configuration register, set partition configuration register attempt, an improper command sequence was entered.

SR.3 does not provide a continuous indication of V_{PP} level. The WSM interrogates and indicates the V_{PP} level only after Block Erase, Advanced Factory Program, (Page Buffer) Program or OTP Program command sequences. SR.3 is not guaranteed to report accurate feedback when $V_{PP} \neq V_{PPH,1}$, $V_{PPH,2}$ or $V_{PPI,K}$.

SR.1 does not provide a continuous indication of block lock bit. The WSM interrogates the block lock bit only after Block Erase, Advanced Factory Program, (Page Buffer) Program or OTP Program command sequences. It informs the system, depending on the attempted operation, if the block lock bit is set. Reading the block lock configuration codes after writing the Read Identifier Codes/OTP command indicates block lock bit status.

SR.15 - SR.8 are reserved for future use and should be masked out when polling the status register.

If SR.7="0" and SR.0="0", the addressed partition is busy and other partition is not busy. In AFP Mode, it indicates that the device is finished programming or verifying data or is ready for data.

If SR.7="0" and SR.0="1", another partition is busy (the addressed partition is not busy). In AFP Mode, it indicates that the device is programming or verifying data.

If SR.7="1" and SR.0="0", no partition is busy. In AFP Mode, it indicates that the device has exited AFP mode.

SR.7="1" and SR.0="1" will not occur.

LHF64N14 16

R	R	R	R	R	R	R	R
15	14	13	12	11	10	9	8
SMS	R	R	R	R	R	R	R
7	6	5	4	3	2	1	0

XSR.15-8 = RESERVED FOR FUTURE
ENHANCEMENTS (R)

XSR.7 = STATE MACHINE STATUS (SMS)

1 = Page Buffer Program available

0 = Page Buffer Program not available

After issue a Page Buffer Program command (E8H), XSR.7="1" indicates that the entered command is accepted. If XSR.7 is "0", the command is not accepted and a next Page Buffer Program command (E8H) should be issued again to check if page buffer is available or not.

NOTES:

XSR.6-0 = RESERVED FOR FUTURE ENHANCEMENTS (R)

XSR.15-8 and XSR.6-0 are reserved for future use and should be masked out when polling the extended status register.

Table 12.	Read	Configuration :	Register	Definition
-----------	------	-----------------	----------	------------

RM	R	FC2	FC1	FC0	WT	DOC	WC
15	14	13	12	11	10	9	8
BS	CC	R	R	BW	BL2	BL1	BL0
7	6	5	4	3	2	1	0

$RCR.15 = READ\ MODE\ (RM)$

0 = Synchronous Burst Reads Enabled

1 = Asynchronous Reads Enabled (Default)

RCR.14 = RESERVED FOR FUTURE ENHANCEMENTS (R)

RCR.13-11 = FREQUENCY CONFIGURATION (FC2-0)

 $000 = Code\ 0$ reserved for future use

001 =Code 1 reserved for future use

010 = Code 2

011 = Code 3

100 = Code 4

101 = Code 5

110 = Code 6 reserved for future use

111 = Code 7 reserved for future use (Default)

RCR.10 = WAIT SIGNAL POLARITY (WT)

0 = WAIT signal is active low

1 = WAIT signal is active high (Default)

RCR.9 = DATA OUTPUT CONFIGURATION (DOC)

0 = Hold Data for One Clock

1 = Hold Data for Two Clocks (Default)

RCR.8 = WAIT CONFIGURATION (WC)

0 = WAIT Asserted During Delay

1 = WAIT Asserted One Data Cycle Before Delay (Default)

RCR.7 = BURST SEQUENCE (BS)

0 = Intel Burst Order

1 = Linear Burst Order (Default)

RCR.6 = CLOCK CONFIGURATION (CC)

0 = Burst Starts and Data Output on Falling Clock Edge

1 = Burst Starts and Data Output on Rising Clock Edge (Default)

RCR.5-4 = RESERVED FOR FUTURE ENHANCEMENTS (R)

RCR.3 = BURST WRAP (BW)

0 = Wrap Burst Reads within Burst Length set by RCR.2-0

1 = No Wrap Burst Reads within Burst Length set by RCR.2-0 (Default).

RCR.2-0 = BURST LENGTH (BL2-0)

001 = 4 Word Burst

010 = 8 Word Burst

011 = Reserved for future use

111 = Continuous (Linear) Burst (Default)

NOTES:

Read configuration register affects the read operations from main and parameter blocks. Read operations for status register, query code, identifier codes, OTP block and device configuration codes support single read cycles.

RCR.14, RCR.5 and RCR.4 bits are reserved for future use and should be masked out when checking the read configuration register.

Refer to Frequency Configuration in Table 13 and Figure 4 for information about the frequency configuration RCR.13-11.

Undocumented combinations of bits RCR.13-11 are reserved for future implementations and should not be used.

Data is not ready when WAIT is active.

Refer to Figure 5 for information about Data Output configuration RCR.9.

Refer to Table 14 for information about Burst Wrap configuration RCR.3.

In the asynchronous page mode, the burst length always equals 8 words.

All the bits in the read configuration register are set to "1" after power-up or device reset.

When the bit RCR.15 is set to "1", other bits are invalid.

Table 13.	Frequency	Configuration Settings	
-----------	-----------	------------------------	--

Read Configuration Register			Frequency Configuration Code	Input Clock Frequency (V _{CC} =1.7V-1.95V)	
RCR.13	RCR.12	RCR.11	Configuration Code	70ns	
0	1	0	2	≤ 40MHz	
0	1	1	3	≤ 52MHz	
1	0	0	4	≤ 66MHz	
1	0	1	5	TBD	

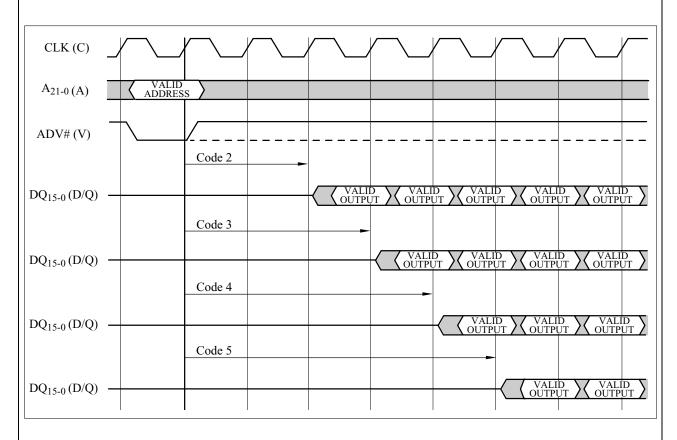


Figure 4. Frequency Configuration

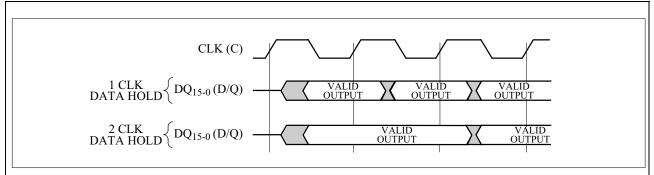


Figure 5. Data Output Configuration

Table 14. Read Sequence and Burst Length

C4 - v4 iv -				quence [Decimal]		
Starting Address	Burst Wrap ⁽¹⁾ (RCR.3=)	4-Word Burst Length (RCR.2-0=001)		8-Word Bu (RCR.2-	Cotinuous Burst (RCR.2-0=111)	
[Decimal]	(KCK.5=)	Linear	Intel	Linear	Intel	Linear
0	0	0-1-2-3	0-1-2-3	0-1-2-3-4-5-6-7	0-1-2-3-4-5-6-7	0-1-2-3-4-5-6
1	0	1-2-3-0	1-0-3-2	1-2-3-4-5-6-7-0	1-0-3-2-5-4-7-6	1-2-3-4-5-6-7
2	0	2-3-0-1	2-3-0-1	2-3-4-5-6-7-0-1	2-3-0-1-6-7-4-5	2-3-4-5-6-7-8
3	0	3-0-1-2	3-2-1-0	3-4-5-6-7-0-1-2	3-2-1-0-7-6-5-4	3-4-5-6-7-8-9
4	0	4-5-6-7	4-5-6-7	4-5-6-7-0-1-2-3	4-5-6-7-0-1-2-3	4-5-6-7-8-9-10
5	0	5-6-7-4	5-4-7-6	5-6-7-0-1-2-3-4	5-4-7-6-1-0-3-2	5-6-7-8-9-10-11
6	0	6-7-4-5	6-7-4-5	6-7-0-1-2-3-4-5	6-7-4-5-2-3-0-1	6-7-8-9-10-11-12
7	0	7-4-5-6	7-6-5-4	7-0-1-2-3-4-5-6	7-6-5-4-3-2-1-0	7-8-9-10-11-12-13
:	:	:	:	:	:	:
14	0	14-15-12-13	14-15-12-13	14-15-8-9- 10-11-12-13	14-15-12-13- 10-11-8-9	14-15-16-17-18-19-20
15	0	15-12-13-14	15-14-13-12	15-8-9-10- 11-12-13-14	15-14-13-12- 11-10-9-8	15-16-17-18-19-20-21
:	:	:	:	i i	:	:
0	1	0-1-2-3	NA	0-1-2-3-4-5-6-7	NA	0-1-2-3-4-5-6
1	1	1-2-3-4	NA	1-2-3-4-5-6-7-8	NA	1-2-3-4-5-6-7
2	1	2-3-4-5	NA	2-3-4-5-6-7-8-9	NA	2-3-4-5-6-7-8
3	1	3-4-5-6	NA	3-4-5-6-7-8-9-10	NA	3-4-5-6-7-8-9
4	1	4-5-6-7	NA	4-5-6-7-8-9-10-11	NA	4-5-6-7-8-9-10
5	1	5-6-7-8	NA	5-6-7-8-9-10-11-12	NA	5-6-7-8-9-10-11
6	1	6-7-8-9	NA	6-7-8-9- 10-11-12-13	NA	6-7-8-9-10-11-12
7	1	7-8-9-10	NA	7-8-9-10- 11-12-13-14	NA	7-8-9-10-11-12-13
:	÷	:	:	:	:	:
14	1	14-15-16-17	NA	14-15-16-17- 18-19-20-21	NA	14-15-16-17-18-19-20
15	1	15-16-17-18	NA	15-16-17-18- 19-20-21-22	NA	15-16-17-18-19-20-21

^{1.} The burst wrap bit (RCR.3) determines whether 4- or 8-word burst-accesses wrap within the burst-length boundary or whether they cross word-length boundaries to perform linear accesses.

Table 15.	Partition	Configuration	Register	Definition

R	R	R	R	R	PC2	PC1	PC0
15	14	13	12	11	10	9	8
R	R	R	R	R	R	R	R
7	6	5	4	3	2	1	0

PCR.15-11 = RESERVED FOR FUTURE ENHANCEMENTS (R)

PCR.10-8 = PARTITION CONFIGURATION (PC2-0)

- 000 = No partitioning. Dual Work is not allowed.
- 001 = Plane1-3 are merged into one partition. (default in a bottom parameter device)
- 010 = Plane 0-1 and Plane2-3 are merged into one partition respectively.
- 100 = Plane 0-2 are merged into one partition. (default in a top parameter device)
- 011 = Plane 2-3 are merged into one partition. There are three partitions in this configuration. Dual work operation is available between any two partitions.
- 110 = Plane 0-1 are merged into one partition. There are three partitions in this configuration. Dual work operation is available between any two partitions.
- 101 = Plane 1-2 are merged into one partition. There are three partitions in this configuration. Dual work operation is available between any two partitions.

111 = There are four partitions in this configuration.
Each plane corresponds to each partition respectively. Dual work operation is available between any two partitions.

PCR.7-0 = RESERVED FOR FUTURE ENHANCEMENTS (R)

NOTES:

After power-up or device reset, PCR10-8 (PC2-0) is set to "001" in a bottom parameter device and "100" in a top parameter device.

See Figure 6 for the detail on partition configuration.

PCR.15-11 and PCR.7-0 are reserved for future use and should be masked out when checking the partition configuration register.

PC:	2 I	PC1	PC0	PARTITIONING FOR DUAL WORK	PC2	PC1	PC0	PARTITIONING FOR DUAL WORK
				PARTITION0				PARTITION2 PARTITION1 PARTITION0
C)	0	0	PLANE3 PLANE1 PLANE1	0	1	1	PLANE3 PLANE1 PLANE1 PLANE1
				PARTITION1 PARTITION0				PARTITION2 PARTITION1 PARTITION0
C)	0	1	PLANE3 PLANE1 PLANE1 PLANE0	1	1	0	PLANE3 PLANE2 PLANE1 PLANE0
				PARTITION1 PARTITION0				PARTITION2 PARTITION1 PARTITION0
C)	1	0	PLANE3 PLANE1 PLANE1 PLANE0	1	0	1	PLANE3 PLANE2 PLANE1 PLANE0
				PARTITION1 PARTITION0				PARTITION3 PARTITION2 PARTITION1 PARTITION0
1	l	0	0	PLANE3 PLANE1 PLANE1	1	1	1	PLANE3 PLANE2 PLANE1 PLANE0

Figure 6. Partition Configuration

1 Electrical Specifications

1.1 Absolute Maximum Ratings*

Operating Temperature

During Read, Erase and Program ...-40°C to +85°C (1)

Storage Temperature

During under Bias....-40°C to +85°C During non Bias...-65°C to +125°C

Voltage On Any Pin

(except V_{CC} and V_{PP}).....-0.5V to V_{CC} +0.5V (2)

 V_{CC} and V_{CCO} Supply Voltage -0.2V to +2.45V $^{(2)}$

 V_{PP} Supply Voltage-0.2V to +12.6V (2, 3, 4)

Output Short Circuit Current 100mA (5)

*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

NOTES:

- 1. Operating temperature is for extended temperature product defined by this specification.
- 2. All specified voltages are with respect to GND. Minimum DC voltage is -0.5V on input/output pins and -0.2V on V_{CC} and V_{PP} pins. During transitions, this level may undershoot to -2.0V for periods <20ns. Maximum DC voltage on input/output pins is V_{CC} +0.5V which, during transitions, may overshoot to V_{CC} +2.0V for periods <20ns.
- 3. Maximum DC voltage on V_{PP} may overshoot to +13.0V for periods <20ns.
- 4. V_{PP} erase/program voltage is normally 1.7V-1.95V. Applying 11.7V-12.3V to V_{PP} during erase/program can be done for a maximum of 1,000 cycles on the main blocks and 1,000 cycles on the parameter blocks. V_{PP} may be connected to 11.7V-12.3V for a total of 80 hours maximum.
- 5. Output shorted for no more than one second. No more than one output shorted at a time.

1.2 Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Operating Temperature	T_A	-40	+25	+85	°C	
V _{CC} Supply Voltage	V _{CC}	1.7	1.8	1.95	V	1
I/O Supply Voltage	V _{CCQ}	1.7	1.8	1.95	V	1
V _{PP} Voltage when Used as a Logic Control	V_{PPH1}	0.90	1.8	1.95	V	1
V _{PP} Supply Voltage	V_{PPH2}	11.7	12	12.3	V	1, 2
Main Block Erase Cycling: V _{PP} =V _{PPH1}		100,000			Cycles	
Parameter Block Erase Cycling: V _{PP} =V _{PPH1}		100,000			Cycles	
Main Block Erase Cycling: V _{PP} =V _{PPH2} , 80 hrs.				1,000	Cycles	
Parameter Block Erase Cycling: $V_{PP}=V_{PPH2}$, 80 hrs.				1,000	Cycles	
Maximum V _{PP} hours at V _{PPH2}				80	Hours	

- 1. See DC Characteristics tables for voltage range-specific specification.
- Applying V_{PP}=11.7V-12.3V during a erase or program can be done for a maximum of 1,000 cycles on the main blocks and 1,000 cycles on the parameter blocks. A permanent connection to V_{PP}=11.7V-12.3V is not allowed and can cause damage to the device.

1.2.1 Capacitance⁽¹⁾ ($T_A = +25$ °C, f = 1MHz)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Input Capacitance	C_{IN}	V _{IN} =0.0V		6	8	pF
CE# Input Capacitance	C _{CE}	V _{IN} =0.0V		10	12	pF
Output Capacitance	C _{OUT}	V _{OUT} =0.0V		10	12	pF

NOTE:

1. Sampled, not 100% tested.

1.2.2 AC Input/Output Conditions

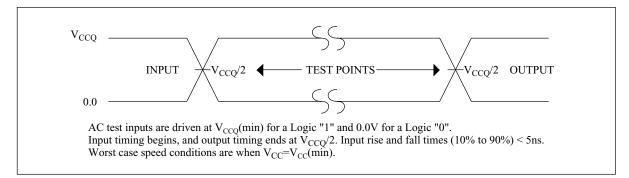


Figure 7. Transient Input/Output Reference Waveform for V_{CC} =1.7V-1.95V

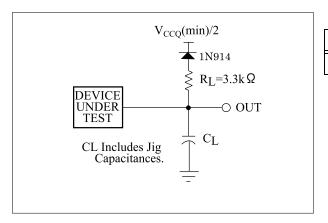


Figure 8. Transient Equivalent Testing Load Circuit

Table 16. Configuration Capacitance Loading Value

Test Configuration	$C_L(pF)$
V _{CC} =1.7V-1.95V	50

1.2.3 DC Characteristics

V_{CC}=1.7V-1.95V

Symbol	Paran	neter	Notes	Min.	Тур.	Max.	Unit	Test Conditions
I_{LI}	Input Load Current		1	-1.0		+1.0	μΑ	V _{CC} =V _{CC} Max.,
I_{LO}	Output Leakage Cur.	rent	1	-1.0		+1.0	μΑ	$egin{array}{ll} V_{CCQ} = V_{CCQ} Max., \ V_{IN}/V_{OUT} = V_{CCQ} \ { m GND} \end{array}$
I_{CCS}	V _{CC} Standby Curren	t	1		4	20	μА	$V_{CC}=V_{CC}Max.,$ $CE\#=RST\#=$ $V_{CCQ}\pm0.2V,$ $WP\#, ADV\#=$ $V_{CCQ} \text{ or GND}$
I _{CCAS}	V _{CC} Automatic Pow	er Savings Current	1,5		4	20	μA	V _{CC} =V _{CC} Max., CE#=GND±0.2V, WP#, ADV#= V _{CCQ} or GND
I_{CCD}	V _{CC} Reset Power-De	own Current	1		4	20	μΑ	RST#=GND±0.2V
	Average V _{CC} Read Current Normal Mode		1,7		15	25	mA	V _{CC} =V _{CC} Max., CE#=V _{IL} ,
	Average V _{CC} Read Current Page Mode	8 Word Read	1,7		5	10	mA	OE#=V _{IH} , f=5MHz
т	Average V _{CC} Read	Burst Length=4	1,3,8		15	20	mA	V _{CC} =V _{CC} Max.,
¹ CCR	Current	Burst Length=8	1,3,8		15	20	mA	CE#=V _{IL} ,
	Synchronous CLK=52MHz	Burst Length= Continuous	1,3,8		25	30	mA	OE#=V _{IH} , f=52MHz
	Average V _{CC} Read	Burst Length=4	1,3,8		20	25	mA	V _{CC} =V _{CC} Max.,
	Current	Burst Length=8	1,3,8		20	25	mA	CE#=V _{IL} ,
	Synchronous CLK=66MHz	Burst Length= Continuous	1,3,8		32	38	mA	OE#=V _{IH} , f=66MHz
I_{CCW}	V _{CC} (Page Buffer) P	rogram,	1,6,8		20	60	mA	$V_{PP}=V_{PPH1}$
1CCW	Advanced Factory P	rogram Current	1,6,8		10	20	mA	$V_{PP}=V_{PPH2}$
т	V. Disab Fassa Ca		1,6,8		10	30	mA	V _{PP} =V _{PPH1}
I_{CCE}	V _{CC} Block Erase Cu	rrent	1,6,8		4	10	mA	V _{PP} =V _{PPH2}
I _{CCWS} I _{CCES}	V _{CC} (Page Buffer) P Block Erase Suspend	-	1,2,8		10	200	μΑ	CE#=V _{IH}
I _{PPS} I _{PPR}	V _{PP} Standby or Read Current		1,7,8		2	5	μΑ	$V_{pp} \le V_{CC}$
Inner	V _{PP} (Page Buffer) Pr	rogram,	1,6,7,8		2	5	μΑ	V _{PP} =V _{PPH1}
I_{PPW}	Advanced Factory P	rogram Current	1,6,7,8		10	30	mA	V _{PP} =V _{PPH2}
T	V _{pp} Block Erase Cur	rrent	1,6,7,8		2	5	μΑ	V _{PP} =V _{PPH1}
I _{PPE}	v pp Diock Elase Cui	iiciit	1,6,7,8		5	15	mA	V _{PP} =V _{PPH2}

DC Characteristics (Continued)

$V_{CC} = 1.7 V - 1.95 V$

Symbol	Parameter	Notes	Min.	Тур.	Max.	Unit	Test Conditions
I	V _{PP} (Page Buffer) Program	1,7,8		2	5	μΑ	V _{PP} =V _{PPH1}
I_{PPWS}	Suspend Current	1,7,8		10	200	μΑ	V _{PP} =V _{PPH2}
I	V _{PP} Block Erase Suspend Current	1,7,8		2	5	μΑ	V _{PP} =V _{PPH1}
I _{PPES}	v pp Block Erase Suspend Current	1,7,8		10	200	μΑ	V _{PP} =V _{PPH2}
V_{IL}	Input Low Voltage	6	-0.4		0.4	V	
V _{IH}	Input High Voltage	6	V _{CCQ} -0.4		V _{CCQ} + 0.4	V	
$V_{ m OL}$	Output Low Voltage	6			0.1	V	$\begin{aligned} &\mathbf{V}_{\mathrm{CC}}\!\!=\!\!\mathbf{V}_{\mathrm{CC}}\!\mathrm{Min.,} \\ &\mathbf{V}_{\mathrm{CCQ}}\!\!=\!\!\mathbf{V}_{\mathrm{CCQ}}\!\mathrm{Min.,} \\ &\mathbf{I}_{\mathrm{OL}}\!\!=\!\!100\mu\mathrm{A} \end{aligned}$
V _{OH}	Output High Voltage	6	V _{CCQ} -0.1			V	$\begin{split} &V_{CC} = &V_{CC}Min., \\ &V_{CCQ} = &V_{CCQ}Min., \\ &I_{OH} = -100\mu A \end{split}$
V _{PPLK}	V _{PP} Lockout during Normal Operations	4,6,7			0.4	V	
V _{PPH1}	V _{PP} during Block Erase, (Page Buffer) Program or OTP Program Operations	7	0.9	1.8	1.95	V	
V _{PPH2}	V _{PP} during Block Erase, Advanced Factory Program, (Page Buffer) Program or OTP Program Operations	7	11.7	12	12.3	V	
V_{LKO}	V _{CC} Lockout Voltage		1.0			V	

- 1. All currents are in RMS unless otherwise noted. Typical values are the reference values at V_{CC} =1.8V and T_A =+25°C unless V_{CC} is specified.
- 2. I_{CCWS} and I_{CCES} are specified with the device de-selected. If read or (page buffer) program is executed while in block erase suspend mode, the device's current draw is the sum of I_{CCES} and I_{CCR} or I_{CCW}. If read is executed while in (page buffer) program suspend mode, the device's current draw is the sum of I_{CCWS} and I_{CCR}.
- The burst wrap bit (RCR.3) determines whether 4- or 8-word burst-accesses wrap within the burst-length boundary or whether they cross word-length boundaries to perform linear accesses.
 Block erase, advanced factory program, (page buffer) program and OTP program are inhibited when V_{PP}≤V_{PPLK}, and not
- 4. Block erase, advanced factory program, (page buffer) program and OTP program are inhibited when V_{PP}≤V_{PPLK}, and not guaranteed in the range between V_{PPLK}(max.) and V_{PPH1}(min.), between V_{PPH1}(max.) and V_{PPH2}(min.) and above V_{PPH2}(max.).
- 5. The Automatic Power Savings (APS) feature automatically places the device in power save mode after read cycle completion. Standard address access timings (t_{AVOV}) provide new data when addresses are changed.
- 6. Sampled, not 100% tested.
- 7. V_{PP} is not used for power supply pin. With $V_{PP} \le V_{PPLK}$, block erase, advanced factory program, (page buffer) program and OTP program cannot be executed and should not be attempted.
 - Applying $12V\pm0.3V$ to V_{PP} provides fast erasing or fast programming mode. In this mode, V_{PP} is power supply pin and supplies the memory cell current for block erasing and (page buffer) programming. Use similar power supply trace widths and layout considerations given to the V_{CC} power bus.
 - Applying $12V\pm0.3V$ to V_{PP} during erase/program can only be done for a maximum of 1,000 cycles on each block. V_{PP} may be connected to $12V\pm0.3V$ for a total of 80 hours maximum.
- 8. The operating current in dual work is the sum of the operating current (read, erase, program) in each plane.

1.2.4 AC Characteristics - Read-Only Operations⁽¹⁾

 V_{CC} =1.7V-1.95V, T_A =-40°C to +85°C

Symbol	Parameter	Notes	Min.	Max.	Unit
t_{CLK}	CLK Period		15		ns
$t_{CH}(t_{CL})$	CLK High (Low) Time		5		ns
t _{CHCL} (t _{CLCH})	CLK Fall (Rise) Time			2.5	ns
t _{AVCH}	Address Setup to CLK		9		ns
t _{VLCH}	ADV# Setup to CLK		10		ns
t _{ELCH}	CE# Setup to CLK		9		ns
t _{CHQV}	CLK to Output Delay			14	ns
t _{CHQX}	Output Hold from CLK		3		ns
t _{CHAX}	Address Hold from CLK		10		ns
t _{CHTV}	CLK to WAIT Valid			14	ns
t _{ELTV}	CE# Low to WAIT Valid			14	ns
t _{EHTZ}	CE# High to WAIT High Z			20	ns
t _{EHEL}	CE# High between Subsequent Synchronous Reads	3	15		ns
t _{AVVH}	Address Setup to ADV#		10		ns
t _{ELVH}	CE# Setup to ADV#		10		ns
t _{AVAV}	Read Cycle Time		70		ns
t _{AVQV}	Address to Output Delay			70	ns
t _{ELQV}	CE# to Output Delay	4		70	ns
t _{VLQV}	ADV# to Output Delay			70	ns
t _{VLVH}	ADV# Pulse Width Low		10		ns
t _{VHVL}	ADV# Pulse Width High		10		ns
t _{VHAX}	Address Hold from ADV#		9		ns
t _{APA}	Page Address Access Time			20	ns
t _{GLQV}	OE# to Output Delay	4		20	ns
t _{PHQV}	RST# High to Output Delay			150	ns
t _{EHQZ} , t _{GHQZ}	CE# or OE# to Output in High Z, Whichever Occurs First	2		15	ns
t _{ELQX}	CE# to Output in Low Z	2	0		ns
t _{GLQX}	OE# to Output in Low Z	2	0		ns
t _{OH}	Output Hold from First Occurring Address, CE# or OE# change	2	0		ns

- 1. See AC input/output reference waveform for timing measurements and maximum allowable input slew rate.
- 2. Sampled, not 100% tested.
- 3. Applies only to subsequent synchronous reads.
- 4. OE# may be delayed up to t_{ELOV} t_{GLOV} after the falling edge of CE# without impact to t_{ELOV}.

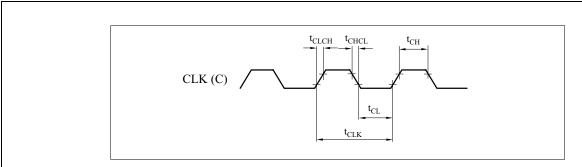


Figure 9. AC Waveform for CLK Input

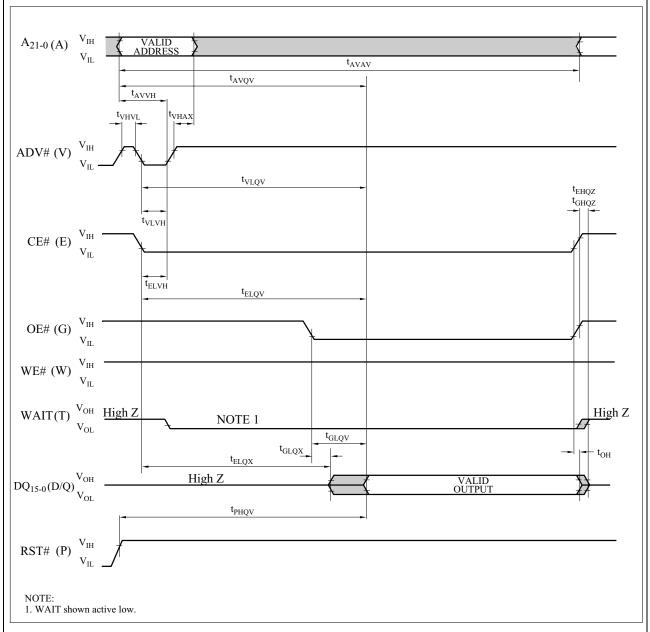


Figure 10. AC Waveform for Single Asynchronous Read Operations from Status Register, Identifier Codes, OTP Block or Query Code

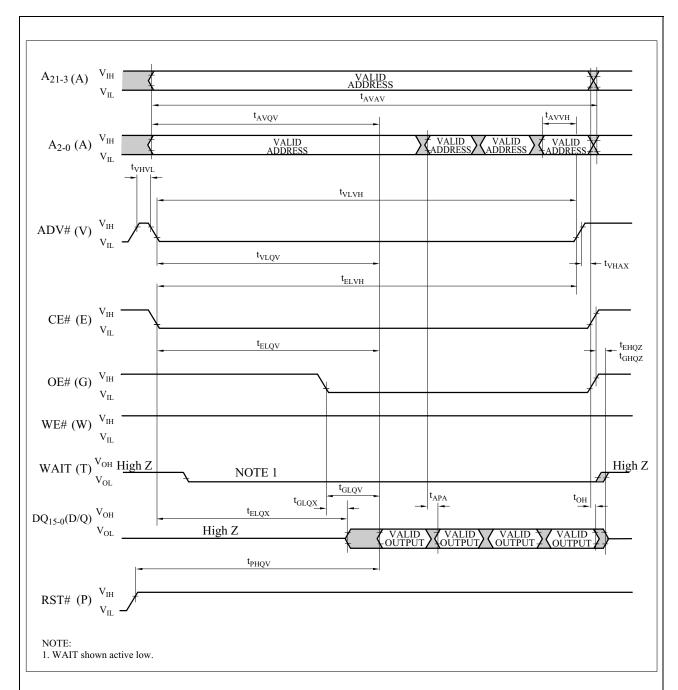


Figure 11. AC Waveform for Asynchronous 4-Word Page Mode Read Operations from Main Blocks or Parameter Blocks

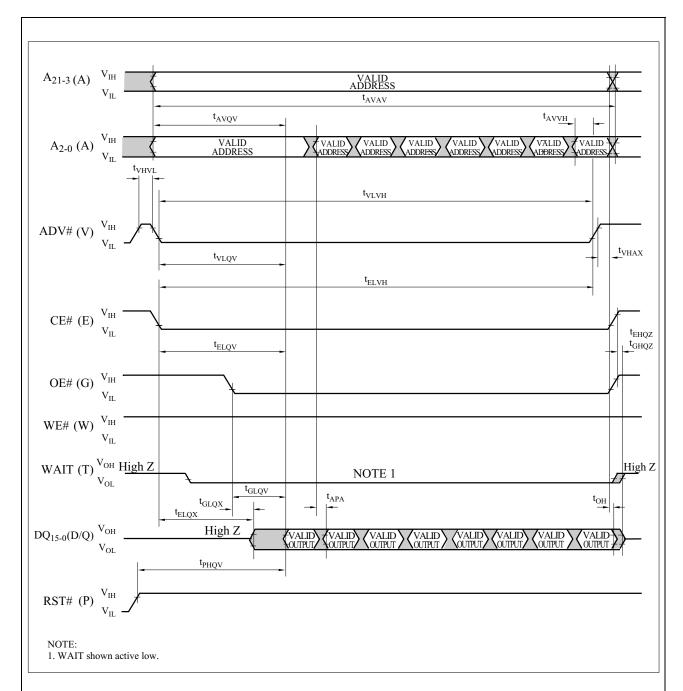


Figure 12. AC Waveform for Asynchronous 8-Word Page Mode Read Operations from Main Blocks or Parameter Blocks

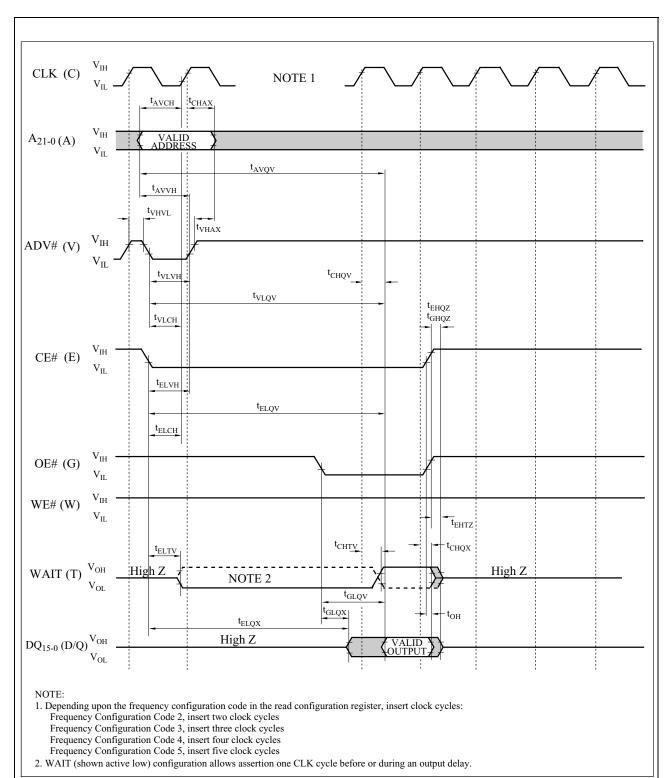
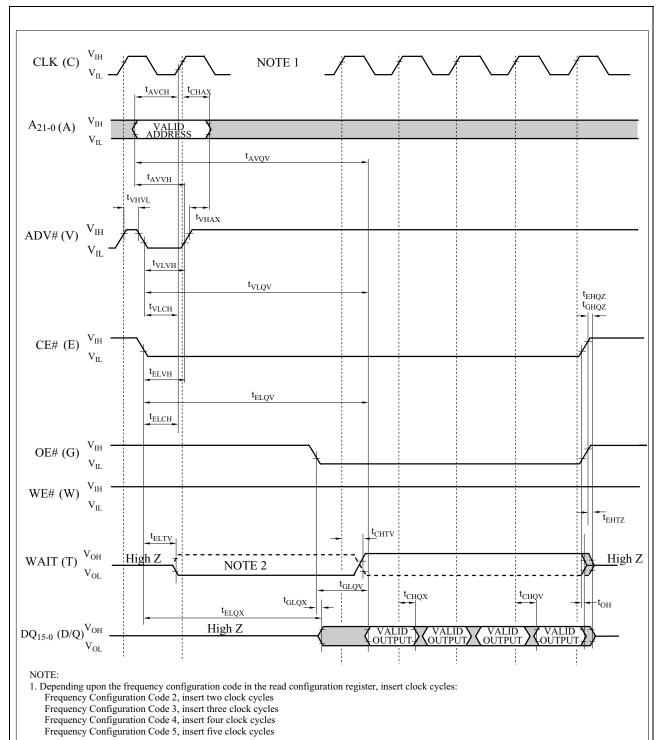



Figure 13. AC Waveform for Single Synchronous Read Operations from Status Register, Identifier Codes, OTP Block or Query Code

2. WAIT (shown active low) configuration allows assertion one CLK cycle before or during an output delay.

Figure 14. AC Waveform for Synchronous Burst Mode Read Operations from Main Blocks or Parameter Blocks (4 Word Burst: RCR.2-0=001)



Figure 15. AC Waveform for Synchronous Burst Mode Read Operations from Main Blocks or Parameter Blocks (Frequency Configuration: RCR.13-11=010)

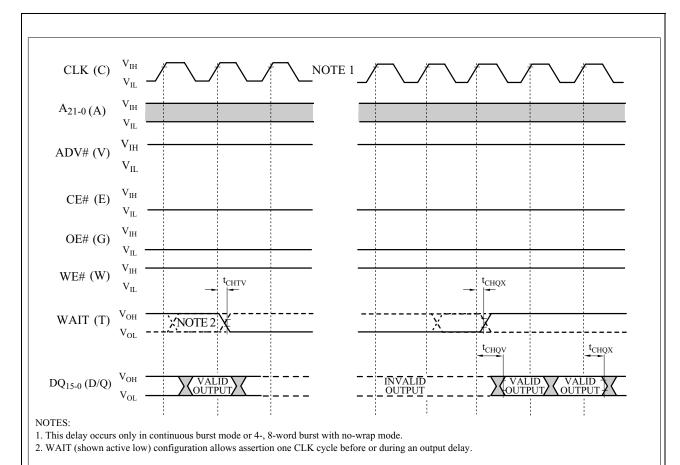
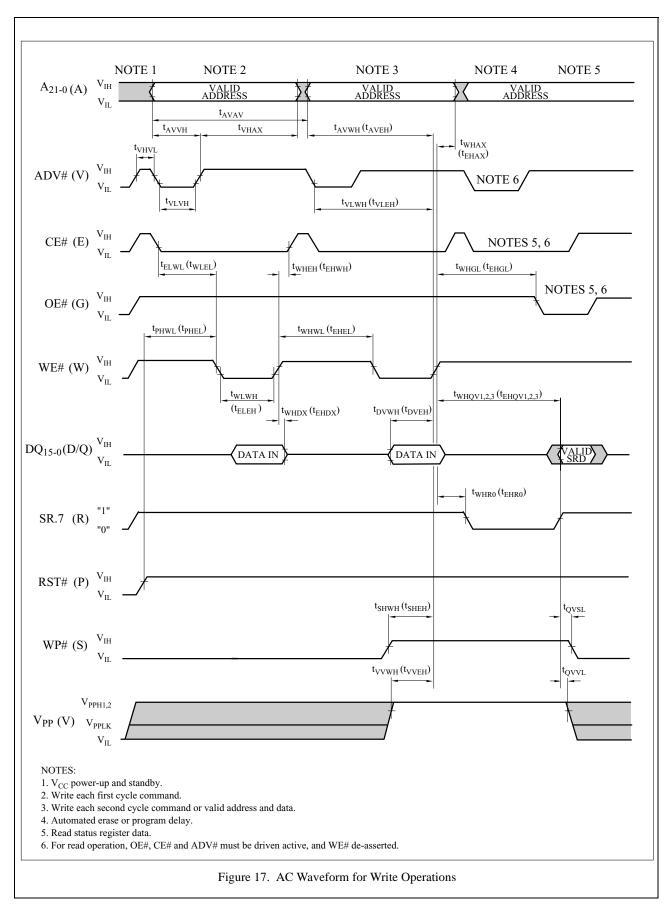


Figure 16. AC Waveform for an Output Delay when Continuous Burst Read with Data Output Configurations Set to One Clock

LHF64N14 33

1.2.5 AC Characteristics - Write Operations (1), (2)

V_{CC} =1.7V-1.95V, T_A =-40°C to +85°C


Symbol	Parameter	Notes	Min.	Max.	Unit
t _{AVAV}	Write Cycle Time		70		ns
t _{PHWL} (t _{PHEL})	RST# High Recovery to WE# (CE#) Going Low	3	150		ns
$t_{\text{ELWL}} (t_{\text{WLEL}})$	CE# (WE#) Setup to WE# (CE#) Going Low		0		ns
t _{WLWH} (t _{ELEH})	WE# (CE#) Pulse Width	4	45		ns
t _{VLVH}	ADV# Pulse Width		10		ns
t _{DVWH} (t _{DVEH})	Data Setup to WE# (CE#) Going High	8	45		ns
$t_{AVWH} (t_{AVEH})$	Address Setup to WE# (CE#) Going High	8	45		ns
t _{VLWH} (t _{VLEH})	ADV# Setup to WE# (CE#) Going High		45		ns
t _{AVVH}	Address Setup to ADV# Going High		10		ns
t _{WHEH} (t _{EHWH})	CE# (WE#) Hold from WE# (CE#) High		0		ns
t _{WHDX} (t _{EHDX})	Data Hold from WE# (CE#) High		0		ns
t _{WHAX} (t _{EHAX})	Address Hold from WE# (CE#) High		0		ns
t _{VHAX}	Address Hold from ADV# High		9		ns
t _{WHWL} (t _{EHEL})	WE# (CE#) Pulse Width High	5	25		ns
t _{SHWH} (t _{SHEH})	WP# High Setup to WE# (CE#) Going High	3	0		ns
t _{VVWH} (t _{VVEH})	V _{PP} Setup to WE# (CE#) Going High	3	200		ns
t _{WHGL} (t _{EHGL})	Write Recovery before Read		30		ns
t _{QVSL}	WP# High Hold from Valid SRD	3, 6	0		ns
t _{QVVL}	V _{PP} Hold from Valid SRD	3, 6	0		ns
t _{WHR0} (t _{EHR0})	WE# (CE#) High to SR.7 Going "0"	3, 7		t _{AVQV} +	ns

- 1. The timing characteristics for reading the status register during block erase, advanced factory program, (page buffer) program and OTP program operations are the same as during read-only operations. Refer to AC Characteristics for readonly operations.
- 2. A write operation can be initiated and terminated with either CE# or WE#.
- 3. Sampled, not 100% tested.
- 4. Write pulse width (twp) is defined from the falling edge of CE# or WE# (whichever goes low last) to the rising edge of CE# or WE# (whichever goes high first). Hence, t_{WP}=t_{WLWH}=t_{ELEH}=t_{WLEH}=t_{ELWH}.

 5. Write pulse width high (t_{WPH}) is defined from the rising edge of CE# or WE# (whichever goes high first) to the falling
- edge of CE# or WE# (whichever goes low last). Hence, t_{WPH}=t_{WHWL}=t_{EHEL}=t_{WHEL}=t_{EHWL}.

 6. V_{PP} should be held at V_{PP}=V_{PPH1/2} until determination of block erase, (page buffer) program or OTP program success (SR.1/3/4/5=0) and held at V_{PP}=V_{PPH2} until determination of advanced factory program success (SR.0/1/3/4=0).

 7. t_{WHR0} (t_{EHR0}) after the Read Query or Read Identifier Codes/OTP command=t_{AVQV}+100ns.
- 8. Refer to Table 6 for valid address and data for block erase, advanced factory program, (page buffer) program, OTP program or lock bit configuration.

35 LHF64N14

1.2.6 Reset Operations

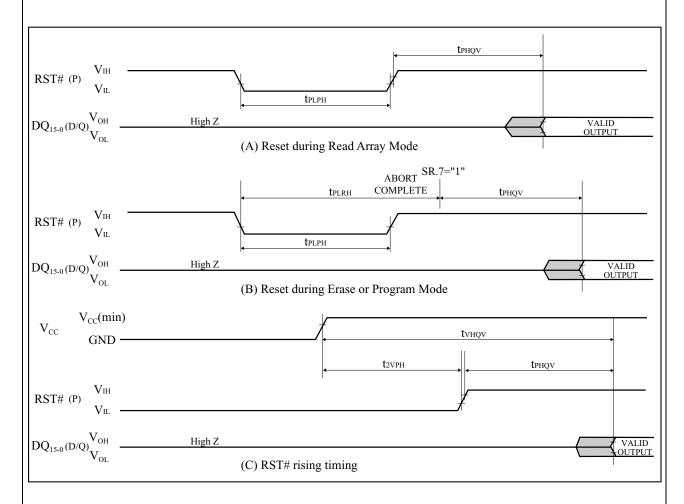


Figure 18. AC Waveform for Reset Operations

Reset AC Specifications (V_{CC}=1.7V-1.95V, T_A=-40°C to +85°C)

Symbol	Parameter	Notes	Min.	Max.	Unit
$t_{\rm PLPH}$	RST# Low to Reset during Read (RST# should be low during power-up.)	1, 2, 3	100		ns
t _{PLRH}	RST# Low to Reset during Erase or Program	1, 3, 4		20	μs
t _{2VPH}	V _{CC} 1.7V to RST# High	1, 3, 5	100		ns
t _{VHQV}	V _{CC} 1.7V to Output Delay	3		1	ms

- A reset time, t_{PHQV}, is required from the later of SR.7 going "1" or RST# going high until outputs are valid. Refer to AC Characteristics Read-Only Operations for t_{PHQV}.
 t_{PLPH} is <100ns the device may still reset but this is not guaranteed.
- 3. Sampled, not 100% tested.
- 4. If RST# asserted while a block erase, advanced factory program, (page buffer) program or OTP program operation is not executing, the reset will complete within 100ns.
- 5. When the device power-up, holding RST# low minimum 100ns is required after V_{CC} has been in predefined range and also has been in stable there.

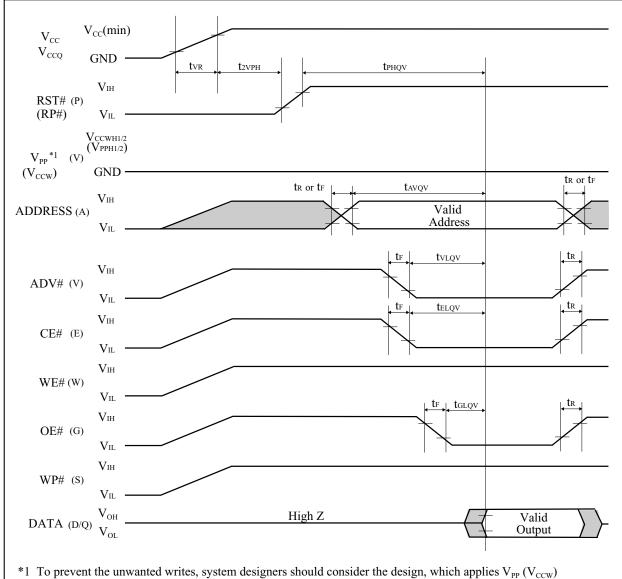
LHF64N14 36

1.2.7 Block Erase, Advanced Factory Program, (Page Buffer) Program and OTP Program Performance⁽³⁾

 V_{CC} =1.7V-1.95V, T_A =-40°C to +85°C

			PBP (Page Buffer) is		PP=V _{PP} In System		V (In N			
Symbol	Parameter	Notes	Used, AFP (Advanced Factory Program) is Used or not	Min.	Typ. ⁽¹⁾	Max. ⁽²⁾	Min.	Typ. ⁽¹⁾	Max. ⁽²⁾	Unit
	WW ID DI	2	-		0.09	0.23		0.04	0.07	s
t_{WPB}	4K-Word Parameter Block Program Time	2	PBP		0.05	0.2		0.02	0.06	s
		2, 6, 7	AFP		-	-		0.015	-	S
	22K Ward Main Dlash	2	-		0.72	1.8		0.31	0.6	S
t_{WMB}	32K-Word Main Block Program Time	2	PBP		0.34	1.4		0.17	0.5	S
		2, 6	AFP		-	-		0.12	-	S
twww.		2	-		22	150		9	130	μs
$t_{WHQV1}/$ t_{EHQV1}	Word Program Time	2	PBP		10	100		5	90	μs
Engvi		2, 6	AFP		-	-		3.5	16	μs
t _{WHOV1} / t _{EHOV1}	OTP Program Time	2	-		72	800		27	185	μs
t _{WHQV2} / t _{EHQV2}	4K-Word Parameter Block Erase Time	2	-		0.3	2.5		0.2	2.5	S
t _{WHQV3} / t _{EHQV3}	32K-Word Main Block Erase Time	2	-		0.6	4		0.5	4	S
t _{WHRH1} / t _{EHRH1}	(Page Buffer) Program Suspend Latency Time to Read	4	-		5	10		5	10	μs
t _{WHRH2} / t _{EHRH2}	Block Erase Suspend Latency Time to Read	4	-		5	20		5	20	μs
t _{ERES}	Latency Time from Block Erase Resume Command to Block Erase Suspend Command	5	-	500			500			μs
	Latency Time for AFP Set-Up	2, 6	AFP		-	-		-	5	μs
t _{ARES}	Latency for AFP Verify Transition	2, 6	AFP		-	-		2.7	5.6	μs
	Latency for AFP Verify	2, 6	AFP		-	-		1.7	130	μs

- 1. Typical values measured at V_{CC} =1.8V, V_{PP} =1.8V or 12V, and T_A =+25°C. Assumes corresponding lock bits are not set. Subject to change based on device characterization.
- 2. Excludes external system-level overhead.
- 3. Sampled, but not 100% tested.
- 4. A latency time is required from writing suspend command (WE# or CE# going high) until SR.7 going "1".
- 5. If the interval time from a Block Erase Resume command to a subsequent Block Erase Suspend command is shorter than t_{ERES} and its sequence is repeated, the block erase operation may not be finished.


 6. AFP mode is allowed only when T_A=+20°C to +30°C.

 7. In AFP mode, eight 4K-word parameter blocks are programmed at a time. Specification shown above is the program time
- per each 4K-word parameter block.

A-1 RECOMMENDED OPERATING CONDITIONS

A-1.1 At Device Power-Up

AC timing illustrated in Figure A-1 is recommended for the supply voltages and the control signals at device power-up. If the timing in the figure is ignored, the device may not operate correctly.

to 0V during read operations and $V_{PPH1/2}$ ($V_{CCWH1/2}$) during write or erase operations. See the application note AP-007-SW-E for details.

Figure A-1. AC Timing at Device Power-Up

For the AC specifications t_{VR} , t_R , t_F in the figure, refer to the next page. See the "ELECTRICAL SPECIFICATIONS" described in specifications for the supply voltage range, the operating temperature and the AC specifications not shown in the next page.

ii

A-1.1.1 Rise and Fall Time

Symbol	Parameter	Notes	Min.	Max.	Unit
t _{VR}	V _{CC} Rise Time	1	0.5	30000	μs/V
t _R	Input Signal Rise Time	1, 2		1	μs/V
t _F	Input Signal Fall Time	1, 2		1	μs/V

NOTES:

Sampled, not 100% tested.
 This specification is applied for not only the device power-up but also the normal operations.

A-1.2 Glitch Noises

Do not input the glitch noises which are below V_{IH} (Min.) or above V_{IL} (Max.) on address, data, reset, and control signals, as shown in Figure A-2 (b). The acceptable glitch noises are illustrated in Figure A-2 (a).

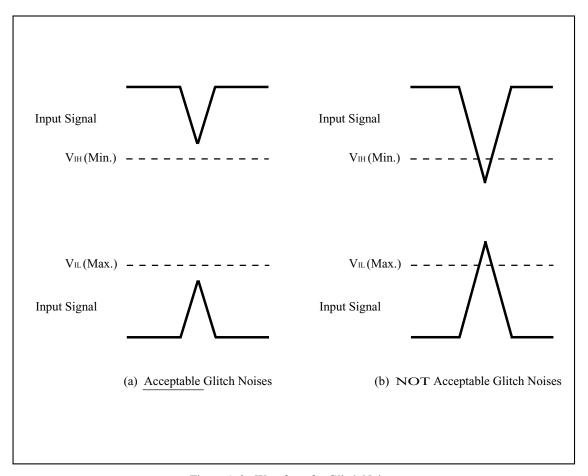
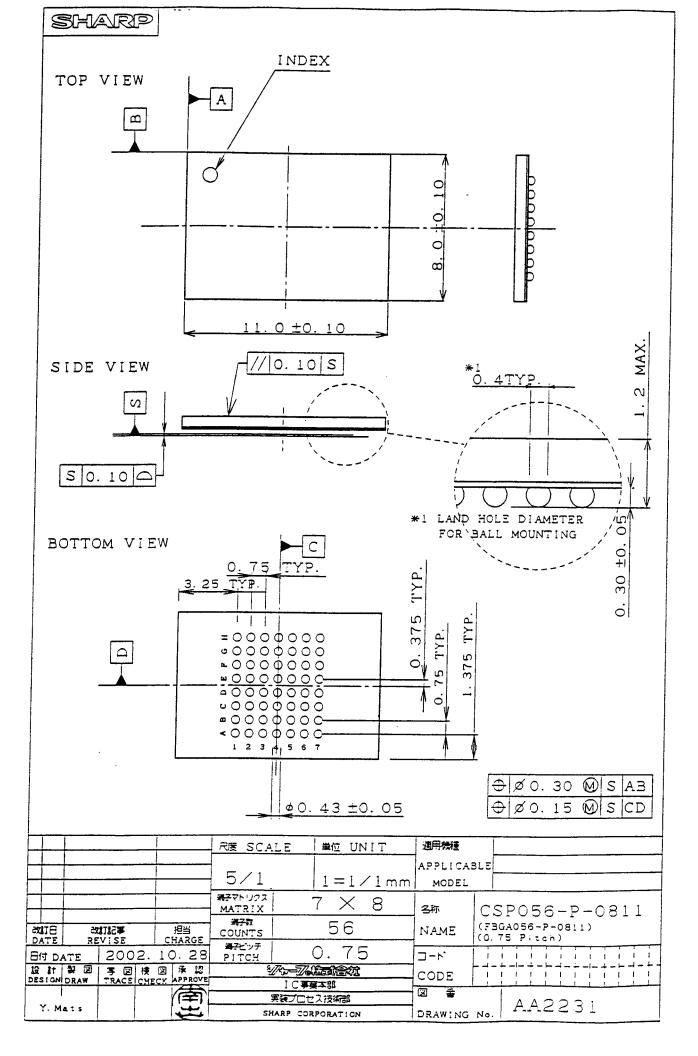


Figure A-2. Waveform for Glitch Noises

See the "DC CHARACTERISTICS" described in specifications for V_{IH} (Min.) and V_{IL} (Max.).


iv

A-2 RELATED DOCUMENT INFORMATION⁽¹⁾

Document No.	Document Name
AP-001-SD-E	Flash Memory Family Software Drivers
AP-006-PT-E	Data Protection Method of SHARP Flash Memory
AP-007-SW-E	RP#, V _{PP} Electric Potential Switching Circuit

NOTE:

1. International customers should contact their local SHARP or distribution sales office.

SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

Suggested applications (if any) are for standard use; See Important Restrictions for limitations on special applications. See Limited Warranty for SHARP's product warranty. The Limited Warranty is in lieu, and exclusive of, all other warranties, express or implied. ALL EXPRESS AND IMPLIED WARRANTIES, INCLUDING THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR USE AND FITNESS FOR A PARTICULAR PURPOSE, ARE SPECIFICALLY EXCLUDED. In no event will SHARP be liable, or in any way responsible, for any incidental or consequential economic or property damage.

NORTH AMERICA

SHARP Microelectronics of the Americas 5700 NW Pacific Rim Blvd. Camas, WA 98607, U.S.A. Phone: (1) 360-834-2500 Fax: (1) 360-834-8903

Fast Info: (1) 800-833-9437 www.sharpsma.com

TAIWAN

SHARP Electronic Components (Taiwan) Corporation 8F-A, No. 16, Sec. 4, Nanking E. Rd. Taipei, Taiwan, Republic of China Phone: (886) 2-2577-7341

Fax: (886) 2-2577-7326/2-2577-7328

CHINA

SHARP Microelectronics of China (Shanghai) Co., Ltd. 28 Xin Jin Qiao Road King Tower 16F Pudong Shanghai, 201206 P.R. China Phone: (86) 21-5854-7710/21-5834-6056 Fax: (86) 21-5854-4340/21-5834-6057 **Head Office:**

No. 360, Bashen Road, Xin Development Bldg. 22 Waigaoqiao Free Trade Zone Shanghai 200131 P.R. China Email: smc@china.global.sharp.co.jp

EUROPE

SHARP Microelectronics Europe
Division of Sharp Electronics (Europe) GmbH
Sonninstrasse 3
20097 Hamburg, Germany
Phone: (49) 40-2376-2286
Fax: (49) 40-2376-2232
www.sharpsme.com

SINGAPORE

SHARP Electronics (Singapore) PTE., Ltd. 438A, Alexandra Road, #05-01/02 Alexandra Technopark, Singapore 119967 Phone: (65) 271-3566 Fax: (65) 271-3855

HONG KONG

SHARP-ROXY (Hong Kong) Ltd. 3rd Business Division, 17/F, Admiralty Centre, Tower 1 18 Harcourt Road, Hong Kong Phone: (852) 28229311 Fax: (852) 28660779 www.sharp.com.hk

Shenzhen Representative Office:

Room 13B1, Tower C, Electronics Science & Technology Building Shen Nan Zhong Road Shenzhen, P.R. China

Phone: (86) 755-3273731 Fax: (86) 755-3273735

JAPAN

SHARP Corporation Electronic Components & Devices 22-22 Nagaike-cho, Abeno-Ku Osaka 545-8522, Japan Phone: (81) 6-6621-1221 Fax: (81) 6117-725300/6117-725301 www.sharp-world.com

KOREA

SHARP Electronic Components (Korea) Corporation RM 501 Geosung B/D, 541 Dohwa-dong, Mapo-ku Seoul 121-701, Korea Phone: (82) 2-711-5813 ~ 8 Fax: (82) 2-711-5819