PRELIMINARY PRODUCT SPECIFICATIONS

Integrated Circuits Group

LH28F128SPHTD-PTL12

Flash Memory 128M (8M × 16/16M × 8)

(Model No.: LHF12P01)

Spec No.: FM033006 Issue Date: March 18, 2003

	SPEC No. F M 0 3 3 0 0 6
	ISSUE: Mar. 18, 2003
<u>To;</u>	
PRELIMIN S P E C I F I C	
Product Type <u>128 M b i t F l a</u>	ish Memory
L H 2 8 F 1 2 8 S P	H T D — P T L 1 2
Model No. (LHF12]	P 0 1)
This device specification is subject to change v	vithout notice.
* This specifications contains <u>30</u> pages includi	ng the cover and appendix.
CUSTOMERS ACCEPTANCE	
DATE:	
BY: PR	ESENTED
	M. NAWAKI Dept. General Manager
	REVIEWED BY: PREPARED BY:
	Product Development Dept. II Flash Memory Division Integrated Circuits Group SHARP CORPORATION

- Handle this document carefully for it contains material protected by international copyright law. Any reproduction, full or in part, of this material is prohibited without the express written permission of the company.
- When using the products covered herein, please observe the conditions written herein and the precautions outlined in the following paragraphs. In no event shall the company be liable for any damages resulting from failure to strictly adhere to these conditions and precautions.
 - The products covered herein are designed and manufactured for the following application areas. When using the products covered herein for the equipment listed in Paragraph (2), even for the following application areas, be sure to observe the precautions given in Paragraph (2). Never use the products for the equipment listed in Paragraph (3).
 - Office electronics
 - Instrumentation and measuring equipment
 - Machine tools
 - Audiovisual equipment
 - Home appliance
 - Communication equipment other than for trunk lines
 - (2) Those contemplating using the products covered herein for the following equipment <u>which demands high</u> <u>reliability</u>, should first contact a sales representative of the company and then accept responsibility for incorporating into the design fail-safe operation, redundancy, and other appropriate measures for ensuring reliability and safety of the equipment and the overall system.
 - Control and safety devices for airplanes, trains, automobiles, and other transportation equipment
 - Mainframe computers
 - Traffic control systems
 - Gas leak detectors and automatic cutoff devices
 - Rescue and security equipment
 - Other safety devices and safety equipment, etc.
 - (3) Do not use the products covered herein for the following equipment which demands extremely high performance in terms of functionality, reliability, or accuracy.
 - Aerospace equipment
 - Communications equipment for trunk lines
 - Control equipment for the nuclear power industry
 - Medical equipment related to life support, etc.
 - (4) Please direct all queries and comments regarding the interpretation of the above three Paragraphs to a sales representative of the company.
- Please direct all queries regarding the products covered herein to a sales representative of the company.

LHF12P01

Preliminary ¹

PAGE

CONTENTS

PAGE

56-Lead TSOP (Normal Bend) Pinout 3
Pin Descriptions 4
CE_0, CE_1, BS Truth Table
Memory Map 6
Identifier Codes Address 8
OTP Block Address Map 9
Bus Operation 10
Command Definitions 11
Functions of Block Lock 13
Status Register Definition 14
Extended Status Register Definition 15
STS Configuration Definition 16

1 Electrical Specifications	17
1.1 Absolute Maximum Ratings	17
1.2 Operating Conditions	17
1.2.1 Capacitance	18
1.2.2 AC Input/Output Test Conditions	18
1.2.3 DC Characteristics	19
1.2.4 AC Characteristics - Read-Only Operations	21
1.2.5 AC Characteristics - Write Operations	25
1.2.6 Reset Operations	27
1.2.7 Block Erase, (Page Buffer) Program and Block Lock Configuration Performance	28

Rev. 0.05

2

Preliminary

LH28F128SPHTD-PTL12 128Mbit (8Mbit×16/16Mbit×8) Page Mode Flash MEMORY ■ 128-Mbit Density Enhanced Data Protection Features • Bit Organization ×8/×16 Individual Block Lock • Absolute Protection with $V_{PEN} \leq V_{PENLK}$ ■ High Performance Page Mode Reads • Block Erase, (Page Buffer) Program Lockout during for Memory Array **Power Transitions** • 120/25ns 4-Word/ 8-Byte Page Mode ■ Automated Erase/Program Algorithms ■ V_{CC}=2.7V-3.6V Operation • Program Time 210µs (Typ.) • V_{CCO} for Input/Output Power Supply Isolation • Block Erase Time 1s (Typ.) Automatic Power Savings Mode Reduces I_{CCR} Cross-Compatible Command Support in Static Mode Basic Command Set OTP (One Time Program) Block • Common Flash Interface (CFI) • 4-Word/ 8-Byte Factory-Programmed Area Extended Cycling Capability • 3963-Word/ 7926-Byte User-Programmable Area • Minimum 100,000 Block Erase Cycles ■ High Performance Program with Page Buffer ■ 56-Lead TSOP (Normal Bend) • 16-Word/ 32-Byte Page Buffer • Page Buffer Program Time 12.5µs/byte (Typ.) CMOS Process (P-type silicon substrate) ■ Operating Temperature -40°C to +85°C ■ ETOX^{TM*} Flash Technology Symmetrically-Blocked Architecture Not designed or rated as radiation hardened

- One-hundred and twenty-eight 64-KWord/ 128-KByte Blocks
- The product, which is Page Mode Flash memory, is a high density, low cost, nonvolatile read/write storage solution for a wide range of applications. The product can operate at $V_{CC}=2.7V-3.6V$ and $V_{PEN}=2.7V-3.6V$

The product supports high performance page mode. It allows code execution directly from Flash, thus eliminating time consuming wait states.

Fast program capability is provided through the use of high speed Page Buffer Program.

The block locking scheme is available for memory array and this scheme provides maximum flexibility for safe nonvolatile code and data storage.

OTP (One Time Program) block provides an area to store security code and to protect its code.

* ETOX is a trademark of Intel Corporation.

Γ

LHF12P01

A_{22} 1 CE_1 1		$56 \longrightarrow NC$
$\begin{array}{c c} CE_1 & \hline & 2 \\ A_{21} & \hline & 3 \end{array}$		55 WE# 54 OE#
		$54 \longrightarrow OE\#$ $53 \longrightarrow STS$
		$\begin{array}{c} 53 \\ 52 \end{array} \qquad \begin{array}{c} 51 \\ DQ_{15} \end{array}$
		$\begin{array}{c} 52 \\ 51 \end{array} \qquad DQ15 \\ DQ7 \end{array}$
$\begin{array}{c c} A_{18} & \underline{} & 6 \\ A_{17} & \underline{} & 7 \\ \end{array}$		$50 \longrightarrow DQ^{7}$
$A_{16} = 8$		$\begin{array}{c} 30 \\ 49 \end{array} DQ^{14} \\ DQ_6 \end{array}$
$V_{CC} = 9$		$\begin{array}{c} 49 \\ 48 \end{array} \qquad \begin{array}{c} DQ_6 \\ GND \end{array}$
$A_{15} = 10$		$\begin{array}{c c} 43 \\ 47 \end{array} \qquad \begin{array}{c} \mathbf{O} \mathbf{N} \mathbf{D} \\ \mathbf{D} \mathbf{Q} 13 \end{array}$
$\begin{array}{c c} A13 & \underline{} & 10 \\ A14 & \underline{} & 11 \end{array}$		$\begin{array}{c} 47 \\ 46 \end{array} \qquad \begin{array}{c} DQ13 \\ DQ5 \end{array}$
$A_{13} = 12$	56-LEAD TSOP	$\begin{array}{c} 40 \\ 45 \end{array} \qquad DQ_{12} \\ DQ_{12} \end{array}$
$A_{12} = 13$	STANDARD PINOUT	$\begin{array}{c} 13 \\ 44 \end{array} \qquad DQ_4 \end{array}$
$CE_0 \longrightarrow 14$	14mm x 20mm	$43 \longrightarrow Vccq$
VPEN [15]	TOP VIEW	42 - GND
RP # 16		41 $\mathbf{D}\mathbf{Q}_{11}$
A11 17		$40 \longrightarrow DQ_3$
A10 \square 18		$39 \square DQ_{10}$
A9 [19]		$38 \square DQ_2$
$A_8 \longrightarrow 20$		37 VCC
GND = 21		36 DQ9
A7 22		$35 \square DQ_1$
A6 \square 23		$34 \square DQ_8$
A5 24		33 DQ0
A4 25		$32 \square A_0$
A3 26		31 BYTE#
A2 27		$30 \longrightarrow BS$
A1 28		29 NC

Figure 1. 56-Lead TSOP (Normal Bend) Pinout

Preliminary ⁴

Symbol	Туре	Name and Function
A ₀	INPUT	ADDRESS INPUTS: Lowest address input in byte mode (BYTE#= V_{IL} : ×8 bit) Address is internally latched during an erase or a program cycle. This pin is not used i word mode (BYTE#= V_{IH} : ×16 bit)
A ₂₂ -A ₁	INPUT	ADDRESS INPUTS: Inputs for addresses during read, erase and program operations. Addresses are internally latched during an erase or a program cycle.
BS	INPUT	BANK SELECT: Bank 0 is selected by $BS=V_{IL}$. Bank 1 is selected by $BS=V_{IH}$.
DQ ₁₅ -DQ ₀	INPUT/ OUTPUT	DATA INPUTS/OUTPUTS: Inputs data and commands during CUI (Command Use Interface) write cycles, outputs data during memory array, status register, query code identifier code reads. Data pins float to high-impedance (High Z) when the chip coutputs are deselected. Data is internally latched during an erase or program cycle DQ_{15} - DQ_8 pins are not used in byte mode (BYTE#= V_{IL} : ×8 bit).
CE ₀ , CE ₁	INPUT	CHIP ENABLE: Activates the device's control logic, input buffers, decoders and sense amplifiers. When the device is de-selected, power consumption reduces to standbe levels. Refer to Table 2 to determine whether the device is selected or de-selected depending on the state of CE_0 , CE_1 and BS.
RP#	INPUT	RESET: When low (V_{IL}), RP# resets internal automation and inhibits erase and program operations, which provides data protection. RP#-high (V_{IH}) enables normal operation After power-up or reset mode, the device is automatically set to read array mode. RP# must be low during power-up/down.
OE#	INPUT	OUTPUT ENABLE: Gates the device's outputs during a read cycle.
WE#	INPUT	WRITE ENABLE: Controls writes to the CUI and array blocks. Addresses and data ar latched on the first edge of CE_0 or CE_1 that disables the device or the rising edge of WE# (whichever occurs first). BS transitions must not occur when $CE_0=CE_1=V_{IL}$ an WE#= V_{IL} .
STS	OPEN DRAIN OUTPUT	STATUS: Indicates the status of the internal WSM (Write State Machine). Whe configured in level mode (default mode), STS acts as a RY/BY# pin (STS is V_{OL} whe the WSM is executing internal erase or program algorithms). When configured in one of its pulse modes, STS can pulse to indicate erase/program completion. Refer to Table for STS configuration.
BYTE#	INPUT	BYTE ENABLE: BYTE# V_{IL} places the device in byte mode (×8). In this mode, DQ_{12} DQ ₈ is floated (High Z) and A ₀ is the lowest address input. BYTE# V_{IH} places the device in word mode (×16) and A ₁ is the lowest address input.
V _{PEN}	INPUT	MONITORING POWER SUPPLY VOLTAGE: V_{PEN} is not used for power supply pin With $V_{PEN} \leq V_{PENLK}$, block erase, (page buffer) program, block lock configuration an OTP program cannot be executed and should not be attempted.
V _{CC}	SUPPLY	DEVICE POWER SUPPLY (2.7V-3.6V): With $V_{CC} \leq V_{LKO}$, all write attempts to the flash memory are inhibited. Device operations at invalid V_{CC} voltage (refer to D Characteristics) produce spurious results and should not be attempted.
V _{CCQ}	SUPPLY	INPUT/OUTPUT POWER SUPPLY (2.7V-3.6V): Power supply for all input/outpupins.
GND	SUPPLY	GROUND: Do not float any ground pins.
NC		NO CONNECT: Lead is not internally connected; it may be driven or floated.

Prel	im	inar	•
		11141	J

5

Table 2. CE_0 , CE_1 , B3 Thui Table () ()			
BS	CE1	CE ₀	Device
V _{IL}	V _{IL}	V _{IL}	Bank 0 Enabled
	V _{IL}	V _{IH}	Disabled
	V _{IH}	V _{IL}	Disabled
	V _{IH}	V _{IH}	Disabled
V _{IH}	V _{IL}	V _{IL}	Bank 1 Enabled
	V _{IL}	V _{IH}	Disabled
	V _{IH}	V _{IL}	Disabled
	V _{IH}	V _{IH}	Disabled

Table 2. CE₀, CE₁, BS Truth Table $^{(1),(2)}$

NOTE:

1. For single-chip applications, CE_1 can be connected to GND. 2. BS transitions must not occur when $CE_0=CE_1=V_{IL}$ and $WE\#=V_{IL}$.

LHF12P01

Preliminary ⁶

Selected by BS=V_{IL} (Bank 0)

[A ₂₂ -A ₁]		[A ₂₂ -A ₀]
3FFFFF	64-Kword/128-Kbyte Block 63	7FFFFF
3F0000 3EFFFF	64-Kword/128-Kbyte Block 62	7E0000 7DFFFF 7C0000
3E0000 3DFFFF	64-Kword/128-Kbyte Block 61	7C0000 7BFFFF
3D0000 3CFFFF 3C0000	64-Kword/128-Kbyte Block 60	7A0000 79FFFF 780000
3BFFFF 3B0000	64-Kword/128-Kbyte Block 59	780000 77FFFF 760000
3AFFFF 3A0000	64-Kword/128-Kbyte Block 58	75FFFF 740000
39FFFF 390000	64-Kword/128-Kbyte Block 57	73FFFF
38FFFF 380000	64-Kword/128-Kbyte Block 56	720000 71FFFF 700000
37FFFF 370000	64-Kword/128-Kbyte Block 55	700000 6FFFFF 6E0000
36FFFF 360000	64-Kword/128-Kbyte Block 54	6DFFFF 6C0000
35FFFF 350000	64-Kword/128-Kbyte Block 53	6A0000
34FFFF 340000	64-Kword/128-Kbyte Block 52	69FFFF
33FFFF 330000	64-Kword/128-Kbyte Block 51	680000 67FFFF 660000
32FFFF 320000	64-Kword/128-Kbyte Block 50	660000 65FFFF 640000
31FFFF 310000	64-Kword/128-Kbyte Block 49	63FFFF 620000
30FFFF 300000	64-Kword/128-Kbyte Block 48	61FFFF 600000
2FFFFF 2F0000	64-Kword/128-Kbyte Block 47	5FFFFF
2EFFFF 2E0000	64-Kword/128-Kbyte Block 46	5E0000 5DFFFF 5C0000
2DFFFF 2D0000	64-Kword/128-Kbyte Block 45	5BFFFF 5A0000
2CFFFF	64-Kword/128-Kbyte Block 44	59FFFF
2C0000 2BFFFF 2B0000	64-Kword/128-Kbyte Block 43	580000 57FFFF 560000
2AFFFF	64-Kword/128-Kbyte Block 42	55FFFF
2A0000 29FFFF 290000	64-Kword/128-Kbyte Block 41	540000 53FFFF 520000
28FFFF 280000	64-Kword/128-Kbyte Block 40	51FFFF 500000
27FFFF 270000	64-Kword/128-Kbyte Block 39	4FFFFF 4E0000
26FFFF 260000	64-Kword/128-Kbyte Block 38	4DFFFF 4C0000
25FFFF	64-Kword/128-Kbyte Block 37	4BFFFF 4A0000
250000 24FFFF 240000	64-Kword/128-Kbyte Block 36	49FFFF 480000
23FFFF 230000	64-Kword/128-Kbyte Block 35	47FFFF 460000
22FFFF 220000	64-Kword/128-Kbyte Block 34	45FFFF 440000
21FFFF 210000	64-Kword/128-Kbyte Block 33	43FFFF 420000
20FFFF 200000	64-Kword/128-Kbyte Block 32	41FFFF 400000

[A ₂₂ -A ₁]		[A ₂₂ -A ₀]
1FFFFF 1F0000	64-Kword/128-Kbyte Block 31	3FFFFF 3E0000
1EFFFF	64-Kword/128-Kbyte Block 30	3DFFFF
1E0000 1DFFFF 1D0000	64-Kword/128-Kbyte Block 29	3C0000 3BFFFF 3A0000
1CFFFF 1C0000	64-Kword/128-Kbyte Block 28	3A0000 39FFFF
1BFFFF 1B0000	64-Kword/128-Kbyte Block 27	380000 37FFFF 360000
1AFFFF 1A0000	64-Kword/128-Kbyte Block 26	360000 35FFFF 340000
19FFFF 190000	64-Kword/128-Kbyte Block 25	33FFFF
1877 18777 180000	64-Kword/128-Kbyte Block 24	320000 31FFFF 300000
17FFFF 170000	64-Kword/128-Kbyte Block 23	300000 2FFFFF 2E0000
16FFFF 160000	64-Kword/128-Kbyte Block 22	2DFFFF
15FFFF 150000	64-Kword/128-Kbyte Block 21	2C0000 2BFFFF 2A0000
14FFFF 140000	64-Kword/128-Kbyte Block 20	29FFFF
13FFFF 130000	64-Kword/128-Kbyte Block 19	280000 27FFFF 260000
12FFFF 120000	64-Kword/128-Kbyte Block 18	260000 25FFFF 240000
11FFFF 110000	64-Kword/128-Kbyte Block 17	240000 23FFFF 220000
10FFFF 100000	64-Kword/128-Kbyte Block 16	220000 21FFFF 200000
0FFFFF 0F0000	64-Kword/128-Kbyte Block 15	1FFFFF 1E0000
0EFFFF 0E0000	64-Kword/128-Kbyte Block 14	1DFFFF 1C0000
0DFFFF 0D0000	64-Kword/128-Kbyte Block 13	1BFFFF 1A0000
0CFFFF 0C0000	64-Kword/128-Kbyte Block 12	19FFFF 180000
0BFFFF 0B0000	64-Kword/128-Kbyte Block 11	17FFFF 160000
0AFFFF 0A0000	64-Kword/128-Kbyte Block 10	15FFFF 140000
09FFFF 090000	64-Kword/128-Kbyte Block 9	13FFFF 120000
08FFFF 080000	64-Kword/128-Kbyte Block 8	11FFFF 100000
07FFFF 070000	64-Kword/128-Kbyte Block 7	0FFFFF 0E0000
06FFFF 060000	64-Kword/128-Kbyte Block 6	0DFFFF 0C0000
05FFFF 050000	64-Kword/128-Kbyte Block 5	0BFFFF 0A0000
04FFFF 040000	64-Kword/128-Kbyte Block 4	09FFFF 080000 07FFFF
03FFFF 030000	64-Kword/128-Kbyte Block 3	060000
02FFFF 020000	64-Kword/128-Kbyte Block 2	05FFFF 040000
01FFFF 010000	64-Kword/128-Kbyte Block 1	03FFFF 020000
00FFFF 000000	64-Kword/128-Kbyte Block 0	01FFFF 000000

Figure 2.1. Memory Map (Memory Area selected by $BS=V_{IL}$)

LHF12P01

Preliminary 7

Selected by BS=V_{IH} (Bank 1)

[A ₂₂ -A ₁]		[A ₂₂ -A ₀]
3FFFFF 3F0000	64-Kword/128-Kbyte Block 63	7FFFFF 7E0000
3EFFFF 3E0000	64-Kword/128-Kbyte Block 62	7DFFFF 7C0000
3DFFFF	64-Kword/128-Kbyte Block 61	7BFFFF
3D0000 3CFFFF 3C0000	64-Kword/128-Kbyte Block 60	7A0000 79FFFF 780000
3BFFFF 3B0000	64-Kword/128-Kbyte Block 59	780000 77FFFF 760000
3AFFFF	64-Kword/128-Kbyte Block 58	760000 75FFFF 740000
3A0000 39FFFF 390000	64-Kword/128-Kbyte Block 57	73FFFF 720000
38FFFF 380000	64-Kword/128-Kbyte Block 56	71FFFF 700000
37FFFF 370000	64-Kword/128-Kbyte Block 55	6FFFFF
36FFFF 360000	64-Kword/128-Kbyte Block 54	6E0000 6DFFFF 6C0000
35FFFF 350000	64-Kword/128-Kbyte Block 53	6BFFFF 6A0000
34FFFF 340000	64-Kword/128-Kbyte Block 52	69FFFF 680000
33FFFF	64-Kword/128-Kbyte Block 51	67FFFF 660000
330000 32FFFF 320000	64-Kword/128-Kbyte Block 50	65FFFF
31FFFF 310000	64-Kword/128-Kbyte Block 49	640000 63FFFF 620000
30FFFF 300000	64-Kword/128-Kbyte Block 48	61FFFF 600000
2FFFFF 2F0000	64-Kword/128-Kbyte Block 47	5FFFFF 5E0000
2ÊFFFF 2E0000	64-Kword/128-Kbyte Block 46	5DFFFF
2DFFFF 2D0000	64-Kword/128-Kbyte Block 45	5C0000 5BFFFF 5A0000
2CFFFF 2C0000	64-Kword/128-Kbyte Block 44	59FFFF
2BFFFF 2B0000	64-Kword/128-Kbyte Block 43	580000 57FFFF 560000 55FFFF
2AFFFF 2A0000	64-Kword/128-Kbyte Block 42	540000
29FFFF 290000	64-Kword/128-Kbyte Block 41	53FFFF
28FFFF 280000	64-Kword/128-Kbyte Block 40	520000 51FFFF 500000
27FFFF 270000	64-Kword/128-Kbyte Block 39	4FFFFF 4E0000
26FFFF 260000	64-Kword/128-Kbyte Block 38	4DFFFF 4C0000
25FFFF 250000	64-Kword/128-Kbyte Block 37	4BFFFF 4A0000
24FFFF 240000	64-Kword/128-Kbyte Block 36	49FFFF 480000
23FFFF 230000	64-Kword/128-Kbyte Block 35	47FFFF 460000
22FFFF 220000	64-Kword/128-Kbyte Block 34	45FFFF 440000
21FFFF 210000	64-Kword/128-Kbyte Block 33	43FFFF 420000
20FFFF 200000	64-Kword/128-Kbyte Block 32	41FFFF 400000

[A ₂₂ -A ₁]		[]]
IFFFFF		$\begin{bmatrix} A_{22} - A_0 \end{bmatrix}$ 3FFFFF
1F0000 1EFFFF	64-Kword/128-Kbyte Block 31	3E0000 3DFFFF
1E0000 1DFFFF	64-Kword/128-Kbyte Block 30	3C0000 3BFFFF
1D0000	64-Kword/128-Kbyte Block 29	3A0000 39FFFF
1CFFFF 1C0000	64-Kword/128-Kbyte Block 28	39FFFF 380000 37FFFF
1BFFFF 1B0000	64-Kword/128-Kbyte Block 27	37FFFF 360000 35FFFF
1AFFFF 1A0000	64-Kword/128-Kbyte Block 26	35FFFF 340000 33FFFF
19FFFF 190000	64-Kword/128-Kbyte Block 25	33FFFF 320000 31FFFF
18FFFF 180000	64-Kword/128-Kbyte Block 24	
17FFFF 170000	64-Kword/128-Kbyte Block 23	300000 2FFFFF 2E0000
16FFFF 160000	64-Kword/128-Kbyte Block 22	2E0000 2DFFFF 2C0000
15FFFF 150000	64-Kword/128-Kbyte Block 21	2C0000 2BFFFF 2A0000
14FFFF 140000	64-Kword/128-Kbyte Block 20	29FFFF
13FFFF 130000	64-Kword/128-Kbyte Block 19	280000 27FFFF 260000
12FFFF 120000	64-Kword/128-Kbyte Block 18	260000 25FFFF 240000
11FFFF 110000	64-Kword/128-Kbyte Block 17	240000 23FFFF 220000
10FFFF 100000	64-Kword/128-Kbyte Block 16	220000 21FFFF 200000
0FFFFF 0F0000	64-Kword/128-Kbyte Block 15	1FFFFF 1E0000
0EFFFF 0E0000	64-Kword/128-Kbyte Block 14	1DFFFF 1C0000
0DFFFF 0D0000	64-Kword/128-Kbyte Block 13	1BFFFF 1A0000
0CFFFF 0C0000	64-Kword/128-Kbyte Block 12	19FFFF 180000
0BFFFF 0B0000	64-Kword/128-Kbyte Block 11	17FFFF 160000
0AFFFF 0A0000	64-Kword/128-Kbyte Block 10	15FFFF 140000
09FFFF 090000	64-Kword/128-Kbyte Block 9	13FFFF 120000
08FFFF 080000	64-Kword/128-Kbyte Block 8	11FFFF 100000
07FFFF 070000	64-Kword/128-Kbyte Block 7	0FFFFF 0E0000
06FFFF 060000	64-Kword/128-Kbyte Block 6	0DFFFF 0C0000
05FFFF 050000	64-Kword/128-Kbyte Block 5	0BFFFF 0A0000
040000 040000	64-Kword/128-Kbyte Block 4	09FFFF 080000
03FFFF 030000	64-Kword/128-Kbyte Block 3	07FFFF
02FFFF 020000	64-Kword/128-Kbyte Block 2	060000 05FFFF 040000
01FFFF 010000	64-Kword/128-Kbyte Block 1	040000 03FFFF 020000
00FFFF 000000	64-Kword/128-Kbyte Block 0	020000 01FFFF 000000
	-	000000

Figure 2.2. Memory Map (Memory Area selected by $BS{=}V_{IH})$

8

Table 3.	Identifier	Codes	Address	
----------	------------	-------	---------	--

	Code	Address $[A_{22}-A_1]^{(1)}$	Data [DQ ₇ -DQ ₀]	Notes
Manufacturer Code	Manufacturer Code	000000H	B0H	2
Device Code	Device Code	000001H	18H	2
Block Lock Configuration	Block is Unlocked	Block	$DQ_0 = 0$	3
Code	Block is Locked	Address + 2	$DQ_0 = 1$	3

NOTES:

The address A₀ and BS don't care.
 "00H" is presented on DQ₁₅-DQ₈ in word mode (BYTE#=V_{IH} : ×16 bit).
 Block Address = The beginning location of a block address. DQ₁₅-DQ₁ are reserved for future implementation.

[A ₂₂ -A ₁]		[A ₂₂ -A ₀]
000FFFH		001FFFH
	Customer Programmable Area	
000085H		00010AH
000084H	Factory Programmed Area	000109H
000081H	ractory riogrammed Area	000102H
000080H	Reserved for Future Implementation (DQ15-DQ2)	000100H
e	$\begin{array}{c} \text{mmable Area Lock Bit } (DQ_1) \\ \text{grammed Area Lock Bit } (DQ_0) \\ \end{array}$	

LHF12P01

Figure 3. OTP Block Address Map (The area not specified in the above figure cannot be used.)

NOTE: 1. BS must be V_{IL} , when using OTP block.

10

Mode	Notes	RP#	CE _{0,1} ⁽³⁾	OE#	WE#	Address	V _{PEN}	DQ ⁽⁴⁾	STS (10)
Read Array	8	V _{IH}	Enabled	V _{IL}	V _{IH}	Х	Х	D _{OUT}	Х
Output Disable		V _{IH}	Enabled	V _{IH}	V _{IH}	Х	Х	High Z	Х
Standby		V _{IH}	Disabled	Х	Х	Х	Х	High Z	Х
Reset	5	V _{IL}	Х	Х	Х	Х	Х	High Z	High Z
Read Identifier Codes/OTP	8	V _{IH}	Enabled	V _{IL}	V _{IH}	Refer to Table 3	Х	Refer to Table 3	Х
Read Query	8,9	V _{IH}	Enabled	V _{IL}	V _{IH}	Х	Х	D _{OUT}	Х
Write	6,7,8	V _{IH}	Enabled	V _{IH}	V _{IL}	Х	Х	D _{IN}	Х

Table 4. Bus Operation^(1, 2)

NOTES:

1. Refer to DC Characteristics. When V_{PEN}≤V_{PENLK}, memory contents can be read, but cannot be altered.

2. X can be V_{IL} or V_{IH} for control pins and addresses, and V_{PENLK} or V_{PENH} for V_{PEN} .

Refer to DC Characteristics for V_{PENLK} and V_{PENH} voltages.

3. Refer to Table 2 to determine whether the device is selected or de-selected depending on the state of CE_0 , CE_1 and BS.

4. DQ refers to DQ_{15} - DQ_0 in word mode (BYTE#= V_{IH} : ×16 bit) and DQ_7 - DQ_0 in byte mode (BYTE#= V_{IL} : ×8 bit).

5. RP# at GND±0.2V ensures the lowest power consumption.

6. Command writes involving block erase, (page buffer) program, block lock configuration or OTP program are reliably executed when $V_{PEN} = V_{PENH}$ and $V_{CC} = 2.7V-3.6V$. 7. Refer to Table 5 for valid D_{IN} during a write operation. BS transitions must not occur when $CE_0 = CE_1 = V_{IL}$ and $WE = V_{IL}$.

8. Never hold OE# low and WE# low at the same timing.

9. Query code = Common Flash Interface (CFI) code.

10. STS is V_{OL} when the WSM (Write State Machine) is executing internal block erase, (page buffer) program or OTP program algorithms. It is High Z during when the WSM is not busy, in block erase suspend mode (with program and page buffer program inactive), (page buffer) program suspend mode, or reset mode.

P	r	e	ir	ni	n	a]	rv	
	-	•					- J	

11

	Bus		First Bus Cycle			Second Bus Cycle		
Command	Cycles Req'd	Notes	Oper ⁽¹⁾	Addr ⁽²⁾	Data ⁽³⁾	Oper ⁽¹⁾	Addr ⁽²⁾	Data ⁽³⁾
Read Array	1		Write	Bnk	FFH			
Read Identifier Codes/OTP	≥ 2	4	Write	Bnk	90H	Read	IA or OA	ID or OD
Read Query	≥ 2	4	Write	Bnk	98H	Read	QA	QD
Read Status Register	2		Write	Bnk	70H	Read	Bnk	SRD
Clear Status Register	1		Write	Bnk	50H			
Block Erase	2	5	Write	BA	20H	Write	BA	D0H
Program	2	5,6	Write	WA	40H or 10H	Write	WA	WD
Page Buffer Program	≥4	5,7	Write	BA	E8H	Write	BA	N-1
Block Erase and (Page Buffer) Program Suspend	1	8	Write	Bnk	B0H			
Block Erase and (Page Buffer) Program Resume	1	8	Write	Bnk	D0H			
STS Configuration	2		Write	Bnk	B8H	Write	Bnk	CC
Set Block Lock Bit	2		Write	BA	60H	Write	BA	01H
Clear Block Lock Bits	2	9	Write	Bnk	60H	Write	Bnk	D0H
OTP Program	2		Write	OA	СОН	Write	OA	OD

Table 5.	Command Definitions	(10)
Table 5.	Command Dominuous	

NOTES:

1. Bus operations are defined in Table 4. Each command is valid for the bank to which the command is written. BS transitions must not occur when $CE_0 = CE_1 = V_{IL}$ and $WE\# = V_{IL}$.

2. Bnk=Any valid address within the bank selected by BS.

IA=Identifier codes address (Refer to Table 3).

QA=Query codes address.

BA=Address within the block for block erase, page buffer program or set block lock bit.

WA=Address of memory location for the Program command.

OA=Address of OTP block to be read or programmed (Refer to Figure 3).

3. The upper byte of the data bus $(DQ_{15}-DQ_8)$ during command writes is ignored in word mode (BYTE#=V_{IH} : ×16 bit). ID=Data to be read from identifier codes. (Refer to Table 3).

QD=Data to be read from query database.

SRD=Data to be read from status register. Refer to Table 7 and Table 8 for a description of the status register bits.

WD=Data to be programmed at location WA. Data is latched on the first edge of CE_0 or CE_1 that disables

the device or the rising edge of WE# (whichever occurs first) during command write cycles.

N-1=N is the number of the words /bytes to be loaded into a page buffer.

OD=Data within OTP block. Data is latched on the first edge of CE_0 or CE_1 that disables the device or the rising edge of WE# (whichever occurs first) during command write cycles.

CC= STS configuration code (Refer to Table 9). STS configuration must be set for every bank.

4. Following the Read Identifier Codes/OTP command, read operations access manufacturer code, device code, block lock configuration code and the data within OTP block (Refer to Table 3).

The Read Query command is available for reading CFI (Common Flash Interface) information.

- 5. Block erase or (page buffer) program cannot be executed when the selected block is locked. Unlocked block can be erased or programmed when RP# is V_{II}.
- 6. Either 40H or 10H are recognized by the CUI (Command User Interface) as the program setup.
- 7. Following the third bus cycle, write the program sequential address and data of "N" times. Finally, write the any valid address within the block to be programmed and the confirm command (D0H).

- 8. If both block erase operation and (page buffer) program operation are suspended, the suspended (page buffer) program operation is resumed when writing the Block Erase and (Page Buffer) Program Resume (D0H) command.
- 9. Following the Clear Block Lock Bits command, all the blocks within the bank to which the command is written are unlocked at a time.
- 10. Commands other than those shown above are reserved by SHARP for future device implementations and should not be used.

Preliminary

Table 6. Functions of Block Lock ^{(1), (2)}							
$DQ_0^{(3)}$	State Name	Erase/Program Allowed ⁽⁴⁾					
0	Unlocked	Yes					
1	Locked	No					

NOTES:

1. Selected block is locked by the Set Block Lock Bit command. Following the Clear Block Lock Bits command, all the blocks within the bank to which the command is written are unlocked at a time.

2. Locked and unlocked states remain unchanged even after power-up/down and device reset.

3. After writing the Read Identifier Codes/OTP command, read operation outputs the block lock bit status on DQ_0 (refer to Table 3).

4. Erase and program are general terms, respectively, to express: block erase and (page buffer) program operations.

Preliminary	14
-------------	----

		Т	able 7. Status R	egister Definition	on					
R	R	R	R	R	R	R	R			
15	14	13	12	11	10	9	8			
WSMS	BESS	BECBLS	PBPOPSBLS	VPENS	PBPSS	DPS	R			
7	6	5	4	3	2	1	0			
ENHANCE	= RESERVED F MENTS (R) E STATE MACH		(WSMS)	program, blo	NOT STS to determ ck lock confi R.6 - SR.1 are in	ine block eras guration or	OTP program			
1 = Block $0 = Block$ $SR.5 = BLO$ BITS STATUS $1 = Error ir$ $0 = Succes$ $SR.4 = (PAG$ AND SET BI $1 = Error ir$ $Block$ $0 = Succes$	(BECBLS) n Block Erase o sful Block Erase E BUFFER) P LOCK LOCK B n (Page Buffer) Lock Bit	d ss/Completed ND CLEAR H r Clear Block I e or Clear Bloc ROGRAM, OT IT STATUS (P Program, OTP	BLOCK LOCK Lock Bits k Lock Bits FP PROGRAM	If both SR.5 a buffer program attempt, an imp	and SR.4 are " 1, block lock con proper command	1"s after a blenfiguration, ST	ock erase, page S configuration			
	STATUS (VPEN LOW Detect, Oj DK			SR.3 does not provide a continuous indication of V_{PEN} level. The WSM interrogates and indicates the V_{PEN} level only after Block Erase, (Page Buffer) Program, Set Block Lock Bit, Clear Block Lock Bits or OTP Program command						
(PBPSS) $1 = (Page I)$	E BUFFER) PR Buffer) Program Buffer) Program	Suspended		when V _{PEN} ≠V _{PENH} or V _{PENLK} . SR.1 does not provide a continuous indication of block loc bit. The WSM interrogates the block lock bit only after Bloc						
1 = Erase of	CE PROTECT S or Program Atte d Block, Operat ced	mpted on a		Erase, (Page Buffer) Program or OTP Program command sequences. It informs the system, depending on the attempted operation, if the block lock bit is set. Reading the block lock configuration codes after writing the Read Identifier Codes/ OTP command indicates block lock bit status.						
SR.0 = RESER	RVED FOR FUT	FURE ENHAN	CEMENTS (R)		nd SR.0 are rese when polling th					

Table 8. Extended Status Register Definition								
R	R R R R R R							
15	14	13	12	11	10	9	8	
SMS	R	R	R	R	R	R	R	
7	6	5	4	3	2	1	0	
ENHANCE XSR.7 = STAT 1 = Page B 0 = Page B	ESERVED FOR MENTS (R) E MACHINE S Suffer Program a Suffer Program r ERVED FOR FU	TATUS (SMS) available not available		XSR.7="1" ind If XSR.7 is "0" Buffer Progran check if page b XSR.15-8 and should be ma:	uffer is availabl	Program com entered comma is not accepted a BH) should be e or not. reserved for f	nd is accepted. and a next Page issued again to future use and	

Preliminary	16
-------------	----

RRRRRRRR15141312111098RRRRRRCCCC76543210 DQ_{15} - DQ_2 = RESERVED FOR FUTURE ENHANCEMENTS (R)NOTES: After power-up or device reset, STS configuration is set to "00".NOTES: STS configuration is set to "00". DQ_1 - DQ_0 = STS CONFIGURATION CODE (CC) 00 = level mode: RY/BY# indication. (Default) 01 = pulse mode on erase complete.STS configuration 00 The output of the STS pin is the control signal to prevent accessing a flash memory while the internal WSM is busy	Table 9. STS Configuration Definition $^{(1),(2)}$								
RRRRRCCCC76543210 DQ_{15} - DQ_2 = RESERVED FOR FUTURE ENHANCEMENTS (R)NOTES: After power-up or device reset, STS configuration is set to "00". DQ_1 - DQ_0 = STS CONFIGURATION CODE (CC) 00 = level mode: RY/BY# indication. (Default) 01 = pulse mode on erase complete.STS configuration 00 The output of the STS pin is the control signal to prevent	R	R	R	R	R	R	R	R	
76543210 DQ_{15} - DQ_2 = RESERVED FOR FUTURE ENHANCEMENTS (R)NOTES: After power-up or device reset, STS configuration is set to "00".NOTES: NOTES: STS configuration is set to "00". DQ_1 - DQ_0 = STS CONFIGURATION CODE (CC) 00 = level mode: RY/BY# indication. (Default) 01 = pulse mode on erase complete.STS configuration 00 The output of the STS pin is the control signal to prevent	15	14	13	12	11	10	9	8	
DQ_{15} - DQ_2 = RESERVED FOR FUTURE ENHANCEMENTS (R)NOTES: DQ_1 - DQ_0 = STS CONFIGURATION CODE (CC) 00 = level mode: RY/BY# indication. (Default) 01 = pulse mode on erase complete.After power-up or device reset, STS configuration is set to "00".STS configuration 00 The output of the STS pin is the control signal to prevent	R	R	R	R	R	R	CC		
ENHANCEMENTS (R)After power-up or device reset, STS configuration is set to "00". $DQ_1-DQ_0 = STS CONFIGURATION CODE (CC)00 = level mode: RY/BY# indication. (Default)01 = pulse mode on erase complete.STS configuration 00The output of the STS pin is the control signal to prevent$	7	6	5	4	3	2	1	0	
 10 - pulse mode on program complete. 11 = pulse mode on erase or program complete. In STS configuration = "00", STS is V_{OL} when the WSM is executing internal erase or program algorithms. STS configuration codes "01", "10" and "11" are all pulse modes such that the STS pin pulses low then high when the operation indicated by the configuration code is completed. STS configuration 10 The output of the STS pin is the control signal to indicate that the program operation is completed and the flash memory is available for the next operation. STS configuration 10 The output of the STS pin is the control signal to indicate that the program operation is completed and the flash memory is available for the next operation. 	$DQ_1-DQ_0 = S'$ $00 = level$ $01 = pulse$ $10 = pulse$ $11 = pulse$ In STS config executing inter- STS configuration modes such the second s	ENHANCEME TS CONFIGUR mode: RY/BY# mode on erase mode on progra mode on erase uration = "00", f mal erase or pro- tion codes "01" at the STS pin p	ENTS (R) ATION CODE indication. (De complete. am complete. or program com STS is V _{OL} wh gram algorithms ', "10" and "11 pulses low then	fault) plete. en the WSM is s. " are all pulse high when the	 "00". STS configurat The output of accessing a (SR.7="0"). STS configurat The output of that the eras is available STS configurat The output of that the prog memory is a STS configurat The output of that the prog 	p or device rest tion 00 of the STS pin i flash memory v tion 01 of the STS pin i e operation is cc for the next ope tion 10 of the STS pin i gram operation available for the tion 11 of the STS pin i se or program op	et, STS config s the control si while the intern s the control si ompleted and the ration. s the control si is completed an next operation s the control si peration is com	gnal to prevent al WSM is busy gnal to indicate he flash memory gnal to indicate hd the flash t. gnal to indicate pleted and the	

NOTE:

When the device is configured in one of the pulse modes, the STS pin pulses low with a typical pulse width of 250ns.
 STS configuration must be set for every bank.

 Electrical Specifications Absolute Maximum Ratings* Operating Temperature During Read, Erase and Program40°C to +85°C ⁽¹⁾ 	*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.
Storage Temperature During under Bias40°C to +85°C During non Bias65°C to +125°C Voltage On Any Pin (except V _{CC} , V _{CCQ} and V _{PEN}) 0.5V to V _{CCQ} +0.5V ⁽²⁾	 NOTES: Operating temperature is for extended temperature product defined by this specification. All specified voltages are with respect to GND. Minimum DC voltage is -0.5V on input/output pins and -0.2V on V_{CC}, V_{CCQ} and V_{PEN} pins. During transitions, this level may undershoot to -2.0V for periods <20ns. Maximum DC voltage on input/output pins is V_{CC}+0.5V which, during transitions, may overshoot to V_{CC}+2.0V for periods <20ns. Output shorted for no more than one second. No more
V _{CC} and V _{CCQ} Supply Voltage0.2V to +3.9V ⁽²⁾ V _{PEN} Supply Voltage0.2V to +3.9V ⁽²⁾ Output Short Circuit Current	than one output shorted at a time.

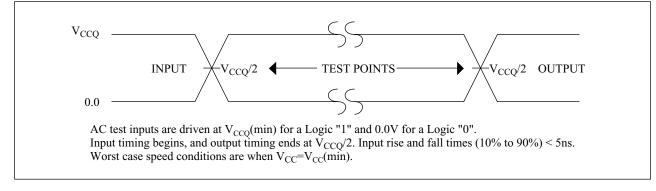
1.2 Operating Conditions

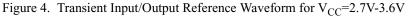
Symbol	Parameter	Notes	Min.	Тур.	Max.	Unit	Test Conditions
T _A	Operating Temperature		-40	+25	+85	°C	Ambient Temperature
V _{CC}	V _{CC} Supply Voltage	1, 2	2.7	3.0	3.6	V	
V _{CCQ}	I/O Supply Voltage	1, 2	2.7	3.0	3.6	V	
V _{PENH}	V _{PEN} Voltage	1	2.7	3.0	3.6	V	
	Block Erase Cycling: V _{PEN} =V _{PENH}		100,000			Cycles	

NOTES:

1. Refer to DC Characteristics tables for voltage range-specific specification.

2. V_{CC} and V_{CCQ} should be the same voltage.


1.2.1 Capacitance ⁽¹⁾ (T_A =+25°C, f=1MHz)


Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
C _{IN}	Input Capacitance		12	16	pF	V _{IN} =0.0V
C _{OUT}	Output Capacitance		16	24	pF	V _{OUT} =0.0V

NOTE:

1. Sampled, not 100% tested.

1.2.2 AC Input/Output Test Conditions

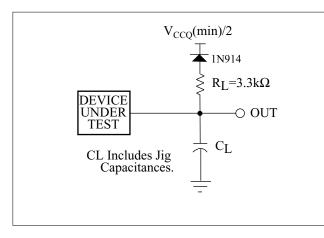


Figure 5. Transient Equivalent Testing Load Circuit

Table 10. Configuration Capacitance Loading Value

Test Configuration	C _L (pF)
V _{CC} =2.7V-3.6V	30

Preliminary

19

1.2.3 DC Characteristics

V_{CC}=2.7V-3.6V

Symbol	Parameter	Notes	Min.	Тур.	Max.	Unit	Test Conditions
I _{LI}	Input Load Current	1	-2		+2	μΑ	V _{CC} =V _{CC} Max.,
I _{LO}	Output Leakage Current	1	-10		+10	μΑ	V _{CCQ} =V _{CCQ} Max., V _{IN} /V _{OUT} =V _{CCQ} or GND
I	V _{CC} Standby Current	1 2 8		50	120	μΑ	CMOS Inputs, $V_{CC}=V_{CC}Max.,$ $V_{CCQ}=V_{CCQ}Max.,$ Device is disabled (refer to Table 2), $RP\#=V_{CCQ}\pm 0.2V$
I _{CCS}	v _{CC} standby Current	1, 2, 8		0.71	2	mA	TTL Inputs, $V_{CC}=V_{CC}Max.,$ $V_{CCQ}=V_{CCQ}Max.,$ Device is disabled (refer to Table 2), $RP\#=V_{IH}$
I _{CCAS}	V _{CC} Automatic Power Savings Current	1, 2, 5		50	120	μΑ	CMOS Inputs, $V_{CC}=V_{CC}Max.,$ $V_{CCQ}=V_{CCQ}Max.,$ Device is enabled (refer to Table 2)
I _{CCD}	V _{CC} Reset Power-Down Current	1		50	120	μA	RP#=GND±0.2V I _{OUT} (STS)=0mA
	Average V _{CC} Page 4 word/ 8 byte	1, 2		15	20	mA	CMOS Inputs, $V_{CC}=V_{CC}Max.,$ $V_{CCQ}=V_{CCQ}Max.,$ Device is enabled (refer to Table 2), f=5MHz, I _{OUT} =0mA
I _{CCR}	Mode Read Current read	1, 2		24	29	mA	CMOS Inputs, $V_{CC}=V_{CC}Max.,$ $V_{CCQ}=V_{CCQ}Max.,$ Device is enabled (refer to Table 2), f=33MHz, I _{OUT} =0mA
	Average V _{CC} Read 1 word/ 1 byte Current read	1, 2		40	50	mA	CMOS Inputs, $V_{CC}=V_{CC}Max.,$ $V_{CCQ}=V_{CCQ}Max.,$ Device is enabled (refer to Table 2), f=5MHz, I _{OUT} =0mA
I _{CCW}	V _{CC} (Page Buffer) Program, Set Block	1, 2, 6		35	60	mA	CMOS Inputs, V _{PEN} =V _{PENH}
•CCW	Lock Bit Current	1, 2, 6		40	70	mA	TTL Inputs, V _{PEN} =V _{PENH}

20

Symbol	Parameter	Notes	Min.	Тур.	Max.	Unit	Test Conditions
[V _{CC} Block Erase, Clear Block Lock	1, 2, 6		35	70	mA	CMOS Inputs, V _{PEN} =V _{PENH}
I _{CCE}	Bits Current	1, 2, 6		40	80	mA	TTL Inputs, V _{PEN} =V _{PENH}
I _{CCWS} I _{CCES}	V _{CC} (Page Buffer) Program or Block Erase Suspend Current	1, 3			10	mA	Device is disabled (refer to Table 2).
V _{IL}	Input Low Voltage	6	-0.5		0.8	V	
V _{IH}	Input High Voltage	6	2.0		V _{CCQ} + 0.5	V	
Ver	Output Low Voltage	6, 8			0.4	V	$V_{CC}=V_{CC}Min.,$ $V_{CCQ}=V_{CCQ}Min.,$ $I_{OL}=2mA$
V _{OL}	Output Low Voltage	0, 8			0.2	V	$V_{CC}=V_{CC}Min., \\ V_{CCQ}=V_{CCQ}Min., \\ I_{OL}=100\mu A$
V _{OH}	Output High Voltage	6, 8	0.85× V _{CCQ}			V	V _{CC} =V _{CC} Min., V _{CCQ} =V _{CCQ} Min., I _{OH} =-1.5mA
* OH	Output High vonage	0, 8	V _{CCQ} -0.2			V	$V_{CC}=V_{CC}Min., \\ V_{CCQ}=V_{CCQ}Min., \\ I_{OH}=-100\mu A$
V _{PENLK}	V _{PEN} Lockout Voltage during Normal Operations	4, 6, 7			1.0	V	
V _{PENH}	V _{PEN} Voltage during Block Erase, (Page Buffer) Program, Set Block Lock Bit, Clear Block Lock Bits or OTP Program Operations	4, 7	2.7	3.0	3.6	V	
V _{LKO}	V _{CC} Lockout Voltage	4	2.0			V	

DC Characteristics (Continued)

NOTES:

1. All currents are in RMS unless otherwise noted. Typical values are the reference values at V_{CC} =3.0V, V_{CCO} =3.0V and $T_A = +25^{\circ}C$ unless V_{CC} is specified.

2. CMOS inputs are either $V_{CCQ} \pm 0.2V$ or GND $\pm 0.2V$. TTL inputs are either V_{IL} or V_{IH} . 3. I_{CCWS} and I_{CCES} are specified with the device de-selected. If read or (page buffer) program is executed while in block erase suspend mode, the device's current draw is the sum of I_{CCES} and I_{CCR} or I_{CCW}. If read is executed while in (page buffer) program suspend mode, the device's current draw is the sum of I_{CCWS} and I_{CCR} .

4. Block erase, (page buffer) program, block lock configuration and OTP program operations are inhibited when $V_{PEN} \le V_{PENLK}$ or $V_{CC} \le V_{LKO}$. These operations are not guaranteed outside the specified voltage ($V_{CC} = 2.7V-3.6V$ and $V_{PEN} = 2.7V - 3.6V$).

5. The Automatic Power Savings (APS) feature automatically places the device in power save mode after read cycle completion. Standard address access timings (t_{AVOV}) provide new data when addresses are changed.

6. Sampled, not 100% tested.

7. V_{PEN} is not used for power supply pin. With $V_{PEN} \leq V_{PENLK}$, block erase, (page buffer) program, block lock configuration and OTP program operations are inhibited.

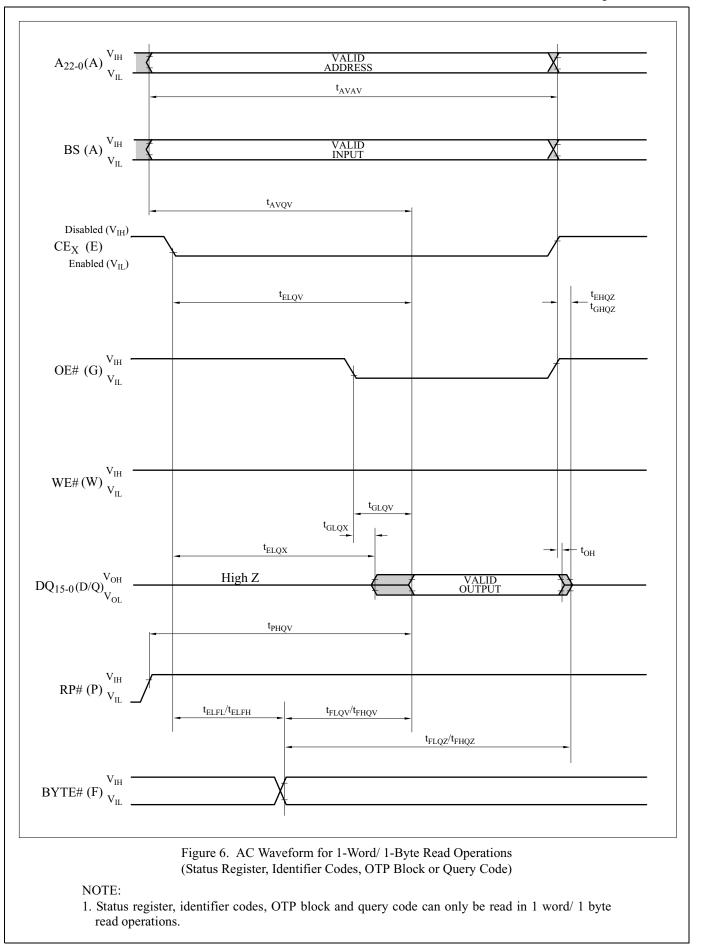
8. Includes STS.

1.2.4 AC Characteristics - Read-Only Operations ⁽¹⁾

		V _{CC}	3.0V-	-3.6V	2.7V-	-3.6V	
		V _{CCQ}	3.0V	-3.6V	2.7V-	-3.6V	
Symbol	Parameter	Notes	Min.	Max.	Min.	Max.	Unit
t _{AVAV}	Read Cycle Time		120		120		ns
t _{AVQV}	Address to Output Delay			120		120	ns
t _{ELQV}	CE _X to Output Delay	3, 4		120		120	ns
t _{APA}	Page Address Access Time			25		30	ns
t _{GLQV}	OE# to Output Delay	3		25		30	ns
t _{PHQV}	RP# High to Output Delay			180		180	ns
t _{ELQX}	CE _X to Output in Low Z	2, 4	0		0		ns
t _{GLQX}	OE# to Output in Low Z	2	0		0		ns
t _{EHQZ}	CE _X to Output in High Z	2, 5		35		35	ns
t _{GHQZ}	OE# to Output in High Z	2		15		15	ns
t _{OH}	Output Hold from First Occurring Address, CE_X or $OE\#$ change	2, 5	0		0		ns
t _{ELFL} /t _{ELFH}	CEx Setup to BYTE# Going Low or High	2, 4		10		10	ns
t _{FLQV} /t _{FHQV}	BYTE# to Output Delay			1000		1000	ns
t _{FLQZ} /t _{FHQZ}	BYTE# to Output in High Z	2		1000		1000	ns

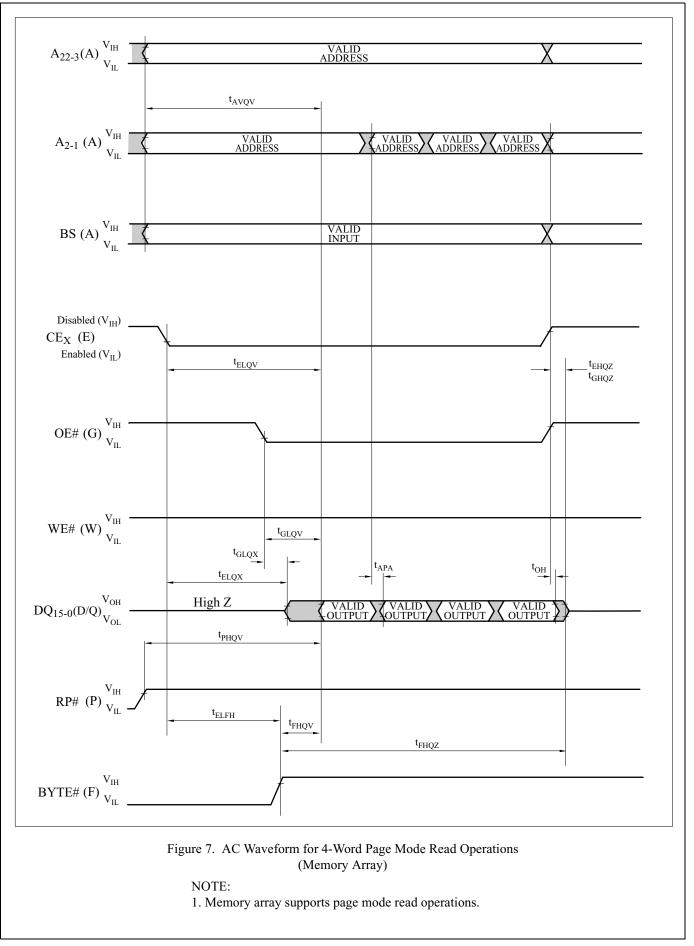
 $T_A = -40^{\circ}C$ to $+85^{\circ}C$

NOTES:

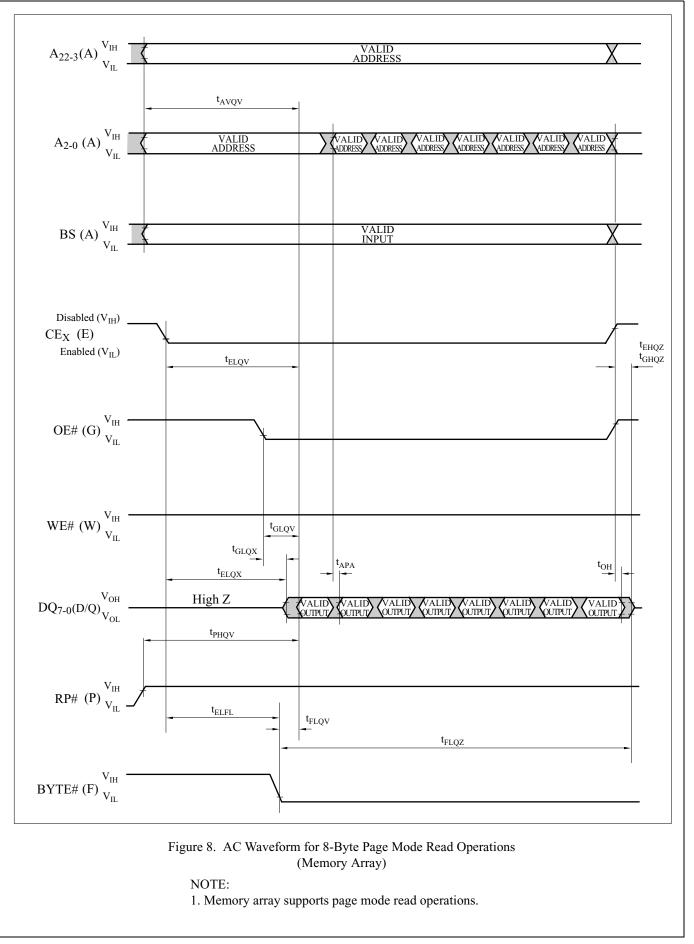

1. Refer to AC input/output reference waveform for timing measurements and maximum allowable input slew rate.

2. Sampled, not 100% tested.

3. OE# may be delayed up to t_{ELQV} — t_{GLQV} after the first edge of CE₀, CE₁ or BS that enables the device (refer to Table 2) without impact to t_{ELQV}.
 4. The timing is defined from the first edge of CE₀, CE₁ or BS that enables the device.
 5. The timing is defined from the first edge of CE₀, CE₁ or BS that disables the device.


LHF12P01

Preliminary


LHF12P01

Preliminary

LHF12P01

Preliminary

Preliminary ²⁵

1.2.5 AC Characteristics - Write Operations $^{(1),(2)}$

Symbol	Parameter	Notes	Min.	Max.	Unit
t _{AVAV}	Write Cycle Time		120		ns
$t_{PHWL} (t_{PHEL})$	RP# High Recovery to WE# (CE _X) Going Low	3, 9	1		μs
$t_{ELWL} (t_{WLEL})$	CE_X (WE#) Setup to WE# (CE _X) Going Low	9	0		ns
$t_{WLWH} (t_{ELEH})$	WE# (CE _X) Pulse Width Low	4, 9, 10	70		ns
t _{DVWH} (t _{DVEH})	Data Setup to WE# (CE _X) Going High	7, 10	50		ns
$t_{\rm AVWH} (t_{\rm AVEH})$	Address Setup to WE# (CE _X) Going High	7, 10	55		ns
t _{WHEH} (t _{EHWH})	CE _X (WE#) Hold from WE# (CE _X) High	10	0		ns
t_{WHDX} (t_{EHDX})	Data Hold from WE# (CE _X) High	10	0		ns
$t_{WHAX} \left(t_{EHAX} \right)$	Address Hold from WE# (CE _X) High	10	0		ns
$t_{\rm WHWL} \left(t_{\rm EHEL} ight)$	WE# (CE _X) Pulse Width High	5, 9, 10	30		ns
t _{VVWH} (t _{VVEH})	V_{PEN} Setup to WE# (CE _X) Going High	3, 10	0		ns
t _{WHGL} (t _{EHGL})	Write Recovery before Read	8	35		ns
t _{WHR0} (t _{EHR0}) t _{WHRL} (t _{EHRL})	WE# (CE _X) High to SR.7 Going "0", STS Going Low	10, 11		500	ns
t _{QVVL}	V _{PEN} Hold from Valid SRD, STS High Z	3, 6, 11	0		ns
t _{FLWH} /t _{FHWH} (t _{FLEH} /t _{FHEH})	BYTE# Setup to WE# (CE _X) Going High	10	50		ns
t _{WHFL} /t _{WHFH} (t _{EHFL} /t _{EHFH})	BYTE# Hold from WE# (CE _X) High	10	90		ns

V_{CC}=2.7V-3.6V, T_A=-40°C to +85°C

NOTES:

1. The timing characteristics for reading the status register during block erase, (page buffer) program, block lock configuration and OTP program operations are the same as during read-only operations. Refer to AC Characteristics for read-only operations.

2. A write operation can be initiated and terminated with either CE_0 , CE_1 or WE#.

BS transitions must not occur when $CE_0 = CE_1 = V_{IL}$ and $WE = V_{IL}$.

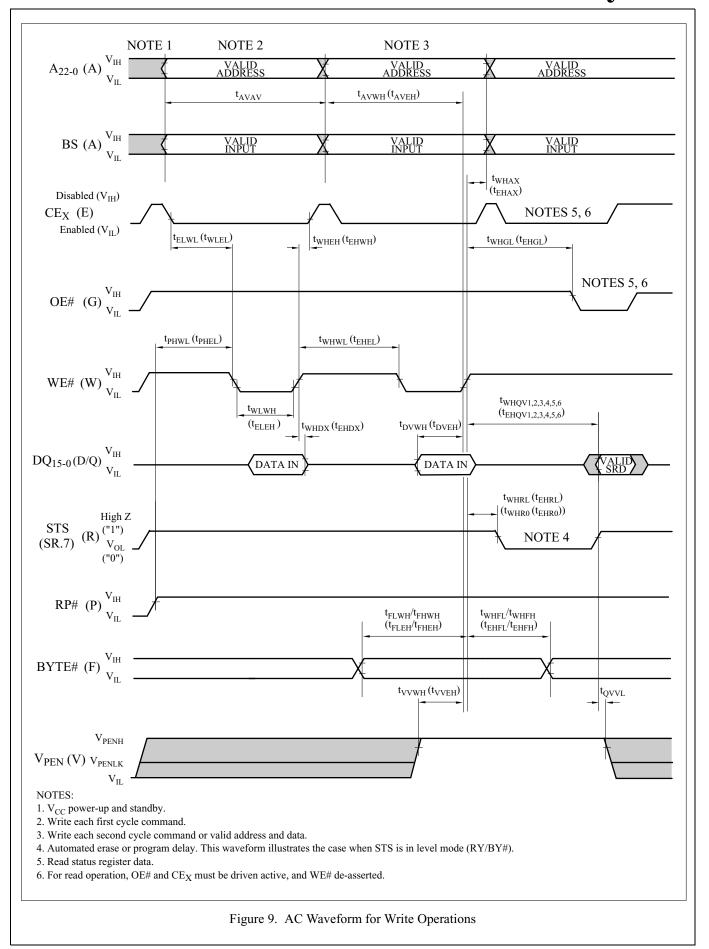
3. Sampled, not 100% tested.

4. Write pulse width low (t_{WP}) is defined from the first edge of CE₀ or CE₁ that enables the device or the falling edge of WE# (whichever occurs last) to the first edge of CE₀ or CE₁ that disables the device or the rising edge of WE# (whichever occurs first). Hence, t_{WP}=t_{WLWH}=t_{ELEH}=t_{WLEH}=t_{ELWH}.

occurs first). Hence, t_{WP}=t_{WLWH}=t_{ELEH}=t_{WLEH}=t_{ELWH}.
5. Write pulse width high (t_{WPH}) is defined from the first edge of CE₀ or CE₁ that disables the device or the rising edge of WE# (whichever occurs first) to the first edge of CE₀ or CE₁ that enables the device or the falling edge of WE# (whichever occurs last). Hence, t_{WPH}=t_{WHWL}=t_{EHEL}=t_{WHEL}=t_{EHWL}.

6. V_{PEN} should be held at V_{PEN}=V_{PENH} until determination of block erase, (page buffer) program, block lock configuration or OTP program success (SR.1/3/4/5=0).

7. Refer to Table 5 for valid address and data for block erase, (page buffer) program, block lock configuration and OTP program.


8. The output delay time t_{AVQV} or t_{ELQV} is required in addition to t_{WHGL} (t_{EHGL}) for read operations after command writes. 9. The timing is defined from the first edge of CE₀ or CE₁ that enables the device.

10. The timing is defined from the first edge of CE_0 or CE_1 that disables the device.

11. STS timings depend on STS configuration.

LHF12P01

Preliminary

LHF12P01

Preliminary 27

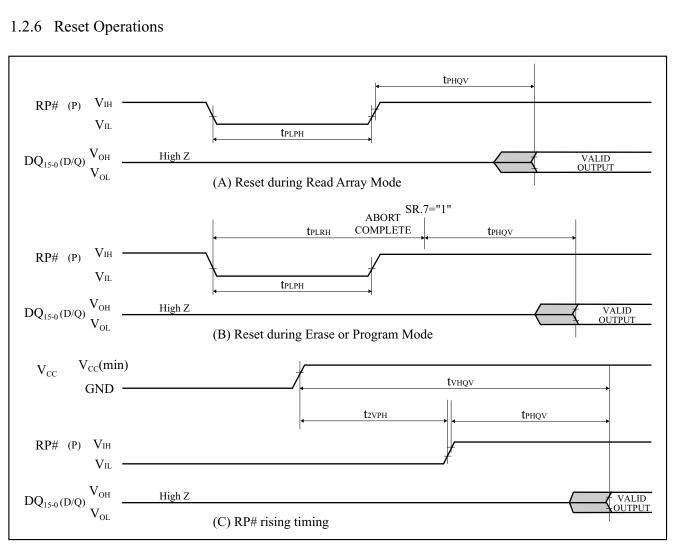


Figure 10. AC Waveform for Reset Operations

Reset AC Specifications	(V _{CC} =2.7V-3.6V,	$T_A = -40^{\circ}C$ to $+85^{\circ}C$)
-------------------------	------------------------------	--

Symbol	Parameter	Notes	Min.	Max.	Unit
t _{PLPH}	RP# Low to Reset during Read (RP# must be low during power-up.)	1, 2, 3	100		ns
t _{PLRH}	RP# Low to Reset during Erase or Program	1, 3, 4		30	μs
t _{2VPH}	V _{CC} 2.7V to RP# High	1, 3, 5	100		ns
t _{VHQV}	V _{CC} 2.7V to Output Delay	3		1	ms

NOTES:

1. A reset time, t_{PHQV}, is required from the later of SR.7 (STS) going "1" (High Z) or RP# going high until outputs are valid. Refer to AC Characteristics - Read-Only Operations for t_{PHQV}.

2. The device may reset if t_{PLPH} is <100ns, but this is not guaranteed.

3. Sampled, not 100% tested.

4. If RP# asserted while a block erase, (page buffer) program, block lock configuration or OTP program operation is not executing, the reset will complete within 100ns.

5. When the device power-up, holding RP# low minimum 100ns is required after V_{CC} has been in predefined range and also has been in stable there.

28

1.2.7 Block Erase, (Page Buffer) Program and Block Lock Configuration Performance⁽³⁾

Symphol	Danamatan	Natar	V	PEN=VPE	NH	Unit
Symbol	Parameter	Notes	Min.	Тур. ⁽¹⁾	Max.	Unit
	Page Buffer Program Time (Time to Program 16 words/ 32 bytes)	2, 6, 7		400	1200	μs
t _{WHQV3} / t _{EHQV3}	Program Time	2		210	630	μs
	Block Program Time (Using Page Buffer Program Command)	2		1.6	4.8	s
t _{WHQV4} / t _{EHQV4}	Block Erase Time	2		1	5	s
t _{WHQV5} / t _{EHQV5}	Set Block Lock Bit Time	2		64	85	μs
t _{WHQV6} / t _{EHQV6}	Clear Block Lock Bits Time	2		0.5	0.7	s
t _{WHRH1} / t _{EHRH1}	(Page Buffer) Program Suspend Latency Time to Read	4		25	90	μs
t _{WHRH2} / t _{EHRH2}	Block Erase Suspend Latency Time to Read	4		26	40	μs
t _{ERES}	Latency Time from Block Erase Resume Command to Block Erase Suspend Command	5	600			μs

V_{CC}=2.7V-3.6V, T_A=-40°C to +85°C

NOTES:

1. Typical values measured at V_{CC} =3.0V, V_{PEN} =3.0V and T_A =+25°C. Assumes corresponding lock bits are not set. Subject to change based on device characterization.

2. Excludes external system-level overhead.

3. Sampled, but not 100% tested.

4. A latency time is required from writing suspend command (the first edge of CE_0 or CE_1 that disables the device or the rising edge of WE#) until SR.7 going "1" or STS going High Z.

5. If the interval time from a Block Erase Resume command to a subsequent Block Erase Suspend command is shorter than t_{ERES} and its sequence is repeated, the block erase operation may not be finished.

6. These values are valid when the page buffer is full, and the start address is aligned on a 16-word/ 32-byte boundary.

7. Program time per byte (t_{WHQV1}/t_{EHQV1}) is 12.5µs/byte (typical). Program time per word (t_{WHQV1}/t_{EHQV1}) is 25.0µs/word (typical).

Program time per word (t_{WHQV2}/t_{EHQV2}) is 25.0µs/word (typical).

A-1 RECOMMENDED OPERATING CONDITIONS

A-1.1 At Device Power-Up

AC timing illustrated in Figure A-1 is recommended for the supply voltages and the control signals at device power-up. If the timing in the figure is ignored, the device may not operate correctly.

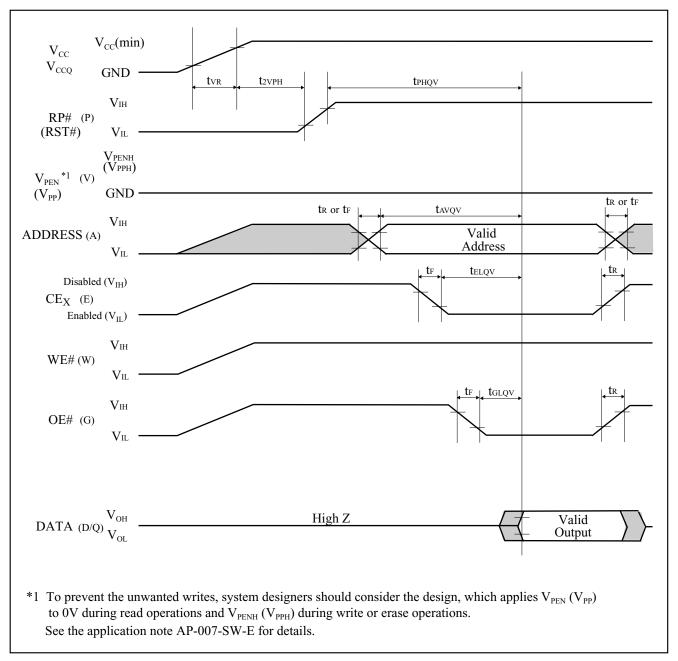


Figure A-1. AC Timing at Device Power-Up

For the AC specifications t_{VR} , t_R , t_F in the figure, refer to the next page. See the "ELECTRICAL SPECIFICATIONS" described in specifications for the supply voltage range, the operating temperature and the AC specifications not shown in the next page.

A-1.1.1 Rise and Fall Time

Symbol	Parameter	Notes	Min.	Max.	Unit
t _{VR}	V _{CC} Rise Time	1	0.5	30000	μs/V
t _R	Input Signal Rise Time	1, 2		1	μs/V
t _F	Input Signal Fall Time	1, 2		1	μs/V

NOTES:

1. Sampled, not 100% tested.

2. This specification is applied for not only the device power-up but also the normal operations.

A-1.2 Glitch Noises

Do not input the glitch noises which are below V_{IH} (Min.) or above V_{IL} (Max.) on address, data, reset, and control signals, as shown in Figure A-2 (b). The acceptable glitch noises are illustrated in Figure A-2 (a).

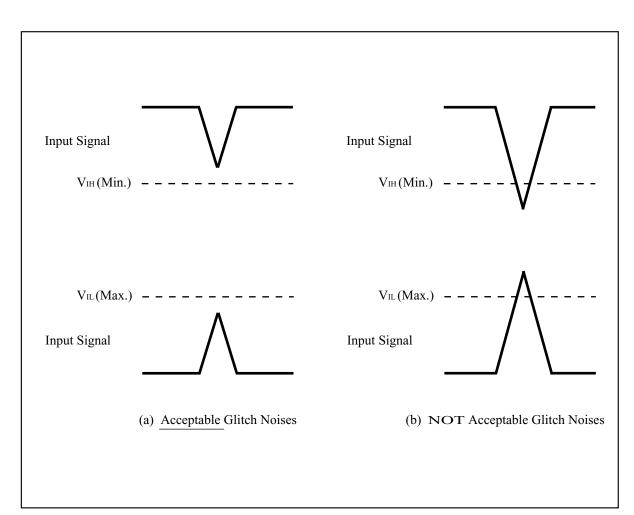
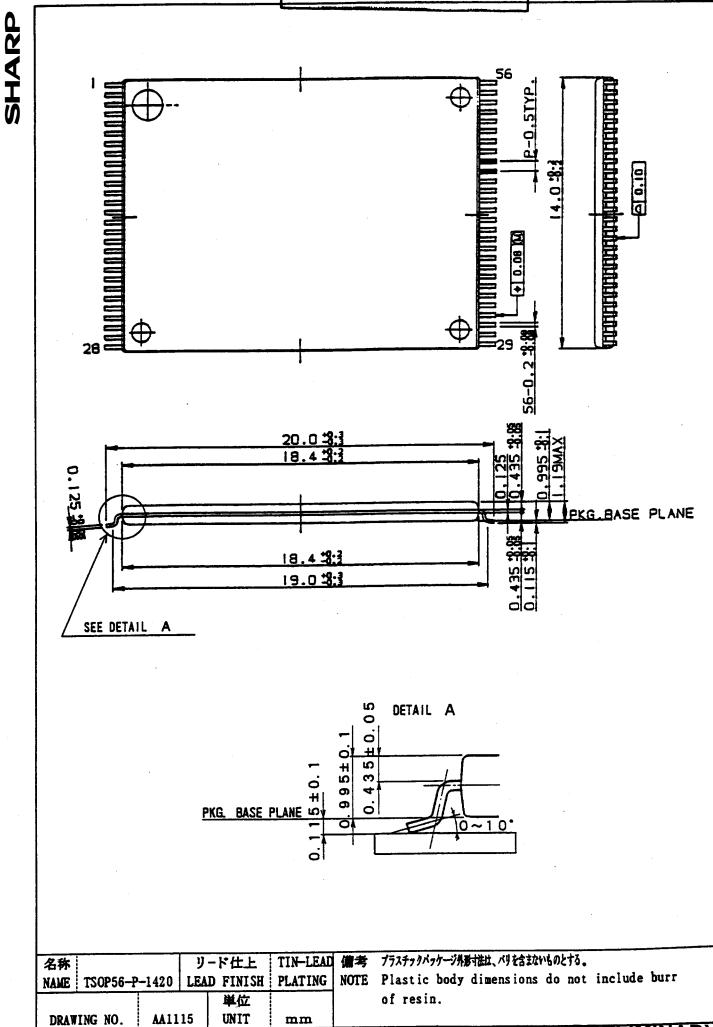


Figure A-2. Waveform for Glitch Noises


See the "DC CHARACTERISTICS" described in specifications for $V_{I\!H}$ (Min.) and $V_{I\!L}$ (Max.).

A-2 RELATED DOCUMENT INFORMATION⁽¹⁾

Document No.	Document Name
AP-001-SD-E	Flash Memory Family Software Drivers
АР-006-РТ-Е	Data Protection Method of SHARP Flash Memory
AP-007-SW-E	RP#, V _{PP} Electric Potential Switching Circuit

NOTE:

1. International customers should contact their local SHARP or distribution sales office.

PRELIMINARY

SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

Suggested applications (if any) are for standard use; See Important Restrictions for limitations on special applications. See Limited Warranty for SHARP's product warranty. The Limited Warranty is in lieu, and exclusive of, all other warranties, express or implied. ALL EXPRESS AND IMPLIED WARRANTIES, INCLUDING THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR USE AND FITNESS FOR A PARTICULAR PURPOSE, ARE SPECIFICALLY EXCLUDED. In no event will SHARP be liable, or in any way responsible, for any incidental or consequential economic or property damage.

SHARP[®]

NORTH AMERICA

SHARP Microelectronics of the Americas 5700 NW Pacific Rim Blvd. Camas, WA 98607, U.S.A. Phone: (1) 360-834-2500 Fax: (1) 360-834-8903 Fast Info: (1) 800-833-9437 www.sharpsma.com

TAIWAN

SHARP Electronic Components (Taiwan) Corporation 8F-A, No. 16, Sec. 4, Nanking E. Rd. Taipei, Taiwan, Republic of China Phone: (886) 2-2577-7341 Fax: (886) 2-2577-7326/2-2577-7328

CHINA

SHARP Microelectronics of China (Shanghai) Co., Ltd. 28 Xin Jin Qiao Road King Tower 16F Pudong Shanghai, 201206 P.R. China Phone: (86) 21-5854-7710/21-5834-6056 Fax: (86) 21-5854-4340/21-5834-6057 Head Office:

No. 360, Bashen Road,

Xin Development Bldg. 22 Waigaoqiao Free Trade Zone Shanghai 200131 P.R. China Email: smc@china.global.sharp.co.jp

EUROPE

SHARP Microelectronics Europe Division of Sharp Electronics (Europe) GmbH Sonninstrasse 3 20097 Hamburg, Germany Phone: (49) 40-2376-2286 Fax: (49) 40-2376-2232 www.sharpsme.com

SINGAPORE

SHARP Electronics (Singapore) PTE., Ltd. 438A, Alexandra Road, #05-01/02 Alexandra Technopark, Singapore 119967 Phone: (65) 271-3566 Fax: (65) 271-3855

HONG KONG

SHARP-ROXY (Hong Kong) Ltd. 3rd Business Division, 17/F, Admiralty Centre, Tower 1 18 Harcourt Road, Hong Kong Phone: (852) 28229311 Fax: (852) 28660779 www.sharp.com.hk **Shenzhen Representative Office:** Room 13B1, Tower C, Electronics Science & Technology Building Shen Nan Zhong Road Shenzhen, P.R. China Phone: (86) 755-3273731 Fax: (86) 755-3273735

JAPAN

SHARP Corporation Electronic Components & Devices 22-22 Nagaike-cho, Abeno-Ku Osaka 545-8522, Japan Phone: (81) 6-6621-1221 Fax: (81) 6117-725300/6117-725301 www.sharp-world.com

KOREA

SHARP Electronic Components (Korea) Corporation RM 501 Geosung B/D, 541 Dohwa-dong, Mapo-ku Seoul 121-701, Korea Phone: (82) 2-711-5813 ~ 8 Fax: (82) 2-711-5819