LH0042

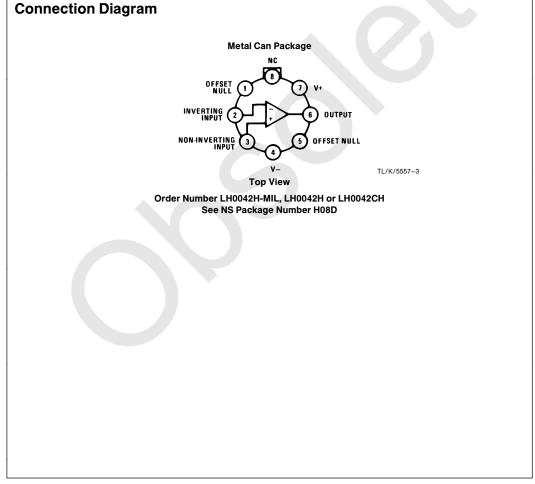
LH0042 Low Cost FET Op Amp

Literature Number: SNOSBF8A

National Semiconductor

LH0042 Low Cost FET Op Amp

General Description


The LH0042 is a FET input operational amplifier with very high input impedance and low input currents with no compromise in noise, common mode rejection ratio, open loop gain, or slew rate. The LH0042 is internally compensated and is free of latch-up.

The LH0042 is specified for operation over the -55°C to $+\,125^\circ\text{C}$ military temperature range. The LH0042C is specified for operation over the -25°C to $+\,85^\circ\text{C}$ temperature range.

The LH0042 op amp is intended to fulfill a wide variety of applications for process control, medical instrumentation, and other systems requiring very low input currents. The LH0042 provides low cost high performance for such applications as electrometer and photocell amplification, pico-ammeters, and high input impedance buffers.

Features

- High open loop gain—100 dB typ
- Internal compensation
- Pin compatible with standard IC op amps
- (TO-99 package)

©1995 National Semiconductor Corporation TL/K/5557

RRD-B30M115/Printed in U. S. A.

February 1995

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. $\pm 22V$

Supply voltage	$\pm 22V$
Power Dissipation (see Graph)	500 mW
Input Voltage (Note 1)	$\pm15V$
Differential Input Voltage (Note 2)	$\pm 30V$
Voltage Between Offset Null and V-	$\pm 0.5V$

Short Circuit Duration Operating Temperature Range LH0022, LH0042, LH0052 LH0022C, LH0042C, LH0052C Storage Temperature Range Lead Temperature (Soldering, 10 sec.)

Continuous

 -55° C to $+125^{\circ}$ C -25°C to +85°C -65°C to +150°C 300°C

DC Electrical Characteristics for LH0022/LH0022C (Note 3) $T_A = T_J(Max)$

		Limits						
Parameter	Conditions	LH0022			LH0022C			Units
		Min	Тур	Max	Min	Тур	Мах	
Input Offset Voltage	$\begin{array}{l} R_S \leq 100 \ k\Omega, T_A = 25^\circ C \\ V_S = \ \pm 15 V \end{array}$		2.0	4.0		3.5	6.0	mV
	${\sf R}_{\sf S} \le$ 100 k $\Omega, {\sf V}_{\sf S} = \pm$ 15V			5.0			7.0	mV
Temperature Coefficient of Input Offset Voltage	$R_{S} \le 100 \ k\Omega$		10			15		μV/°C
Offset Voltage Drift with Time			3			4		μV/wee
Input Offset Current	T _A = 25°C (Note 4)		0.2	2.0		1.0	5.0	pА
				2.0			0.5	nA
Temperature Coefficient of Input Offset Current		Doubles Every 10°C		Doubles Every 10°C				
Offset Current Drift with Time			0.1			0.1		pA/wee
Input Bias Current	T _A = 25°C (Note 4)		5	10		10	25	pА
				10			2.5	nA
Temperature Coefficient of Input Bias Current		Doub	les Every	10°C	Doub	les Every	10°C	
Differential Input Resistance			1012			10 ¹²		Ω
Common Mode Input Resistance			10 ¹²			10 ¹²		Ω
Input Capacitance			4.0			4.0		pF
Input Voltage Range	$V_{S} = \pm 15V$	±12	±13.5		±12	±13.5		v
Common Mode Rejection Ratio	$R_{S} \leq 10 \ \text{k}\Omega, \ V_{IN} = \ \pm 10 \text{V}$	74	90		70	90		dB
Supply Voltage Rejection Ratio	$R_{S} \leq 10 \ \text{k}\Omega, \ \pm 5 \text{V} \leq \text{V}_{S} \leq \ \pm 15 \text{V}$	74	90		70	90		dB
Large Signal Voltage Gain	$\begin{split} R_L &= 2 \ k\Omega, \ V_{OUT} = \ \pm \ 10 V \\ T_A &= 25^\circ C, \ V_S = \ \pm \ 15 V \end{split}$	75	100		75	100		V/mV
	$ \begin{array}{l} R_L = 2 \ k \Omega, \ V_{OUT} = \ \pm \ 10V \\ V_S = \ \pm \ 15V \end{array} $	30			30			V/mV
Output Voltage Swing	$ \begin{array}{l} R_{L} = 1 \; k\Omega, T_{A} = 25^\circ C \\ V_{S} = \; \pm \; 15V \end{array} $	±10	±12.5		±10	±12		v
	$R_L = 2 k\Omega, V_S = \pm 15V$	±10			±10			V
Output Current Swing	$V_{OUT} = \pm 10V, T_A = 25^{\circ}C$	±10	±15		±10	±15		mA
Output Resistance			75			75		Ω
Output Short Circuit Current			25			25		mA
Supply Current	$V_{S} = \pm 15V$		2.0	2.5		2.4	2.8	mA
Power Consumption	$V_{S} = \pm 15V$			75			85	mW

		Limits						
Parameter	Conditions	LH0042			LH0042C			Units
		Min	Тур	Max	Min	Тур	Max	
Input Offset Voltage	$R_S \leq 100 \ k\Omega$		5.0	20		6.0	20	mV
Temperature Coefficient of Input Offset Voltage	$R_{S} \leq 100 \ k\Omega$		10			15		μV/°C
Offset Voltage Drift with Time			7.0			10		μV/week
Input Offset Current	T _A = 25°C (Note 4)		1.0	5.0		2.0	10	pА
Input Bias Current	T _A = 25°C (Note 4)		10	25		15	50	pА
Temperature Coefficient of Input Bias Current		Doubles Every 10°C			Doubles Every 10°C			
Differential Input Resistance			1012			1012		Ω
Common Mode Input Resistance			1012			1012		Ω
Input Capacitance			4.0			4.0		pF
Input Voltage Range		±12	±13.5		±12	±13.5		v
Common Mode Rejection Ratio	$R_{S} \leq 10 \ k\Omega, \ V_{IN} = \ \pm 10 V$	70	86		70	80		dB
Supply Voltage Rejection Ratio	$R_{S} \leq$ 10 kΩ, $\pm 5V \leq V_{S} \leq$ $\pm 15V$	70	86		70	86		dB
Large Signal Voltage Gain	$\label{eq:RS} \begin{split} R_S &\leq 2 \: k\Omega, \: V_{OUT} \:= \: \pm \: 10V, \\ T_A &= \: 25^{\circ}C \end{split}$	50	100		25	100		V/mV
	$R_{S} \leq 2 k \Omega, V_{OUT} = \pm 10 V$	30			25			V/mV
Output Voltage Swing	$R_L = 1 \text{ k}\Omega, T_A = 25^{\circ}C$	±10	±12.5		± 10	±12		V
	$R_L = 2 k\Omega$	±10			±10			V
Output Current Swing	$V_{OUT} = \pm 10V$	±10	±15		±10	±15		mA
Output Resistance			75			75		Ω
Output Short Circuit Current			20			20		mA
Supply Current	$V_{S} = \pm 15V$		2.5	3.5		2.8	4.0	mA
Power Consumption	$V_{S} = \pm 15V$			105			120	mW

				Limits							
Parameter	Conditions			L	.H0052		LH0052C			Units	
				Min	Тур	Max	Min	Тур	Max		
Input Bias Current	$T_A = 25^{\circ}C$ (Note	ə 4)			0.5	2.5		1.0	5.0	pА	
						2.5			0.5	nA	
Temperature Coefficient of Input Bias Current			Doubles Every 10°C			Doubles Every 10°C					
Differential Input Resistance					10 ¹²			10 ¹²		Ω	
Common Mode Input Resistance					10 ¹²			10 ¹²		Ω	
Input Capacitance					4.0			4.0		pF	
Input Voltage Range	$V_{S} = \pm 15V$			±12	±13.5		±12	±13.5		v	
Common Mode Rejection Ratio	$R_{S} \leq$ 10 k Ω , V _{IN}	$= \pm 10V$		74	90		70	90		dB	
Supply Voltage Rejection Ratio	$R_{S} \leq$ 10 k Ω , ±5	$\Omega, \pm 5V \le V_{S} \le \pm 15V$		74	90		70	90		dB	
Large Signal Voltage Gain	$\begin{array}{l} R_{L}=2k\Omega,V_{OU}\\ V_{S}=\pm15V,T_{A} \end{array}$	•	V	75	100		75	100		V/m	
	$ \begin{array}{l} R_{L} = 2 \ k \Omega, V_{OU} \\ V_{S} = \ \pm 15 V \end{array} $	$T = \pm 10$	V	30			30			V/m	
Output Voltage Swing		= 25°C		±10	±12.5		±10	±12		v	
	$R_L = 2 k\Omega, V_S =$	= ±15V		±10			±10			V	
Output Current Swing	$V_{OUT} = \pm 10V$	$T_A = 25^{\circ}C$	C	±10	±15		±10	±15		mA	
Output Resistance					75			75		Ω	
Output Short Circuit Current					25			25		mA	
Supply Current	$V_{S} = \pm 15V$				3.0	3.5		3.0	3.8	mA	
Power Consumption	$V_{S} = \pm 15V$					105			114	m٧	
AC Electrical Chara	acteristics	or all amp	lifiers (T _≠	A = 25°C,	$V_{S} = \pm 1$ Limits	5V)					
Parameter	Conditions	Lł	10022/4:			LH00	0022C/42C/52C			Units	
		Min	Тур	Max	Mi		Тур	Max		-	
								1			
Slew Rate V	oltage Follower	1.5	3.0		1.0)	3.0			V/µs	

1.0

0.3

10

4.5

4.0

1.5

30

1.0

0.3

15

4.5

4.0

1.5

40

MHz

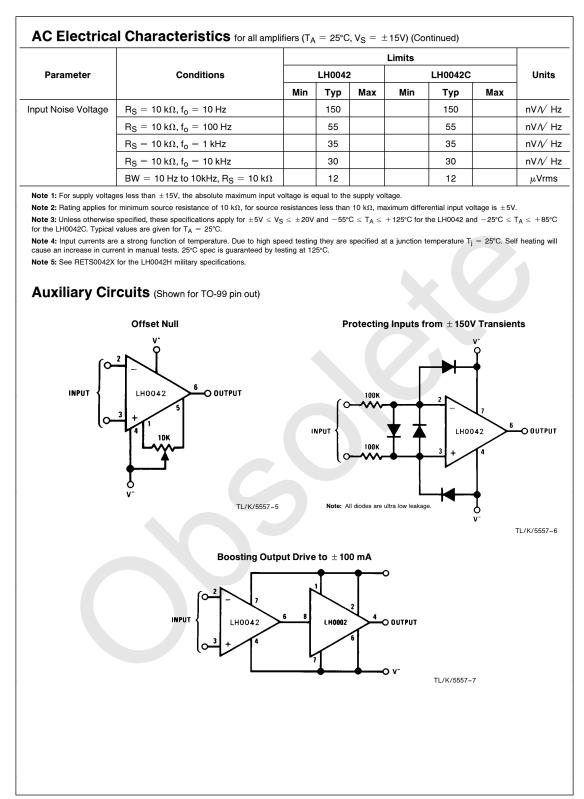
μs

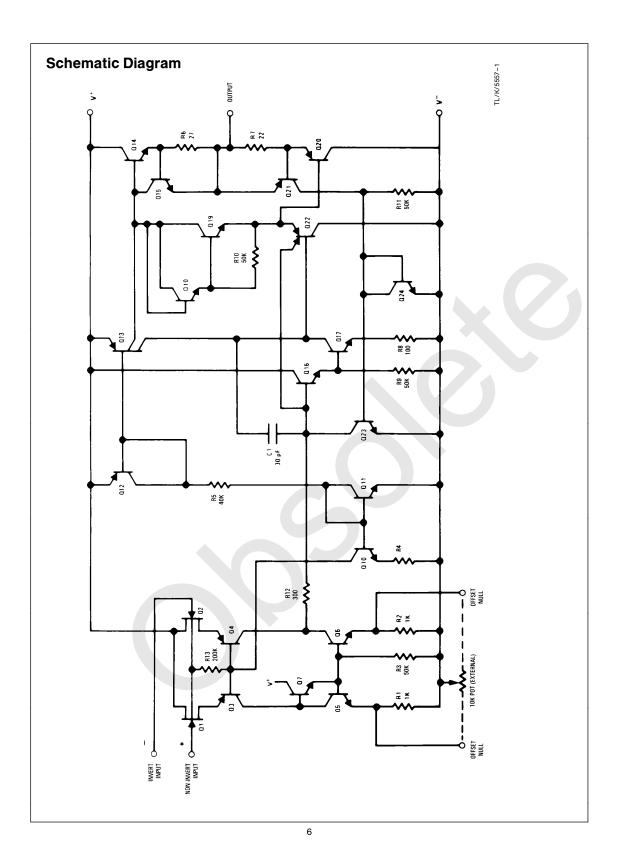
%

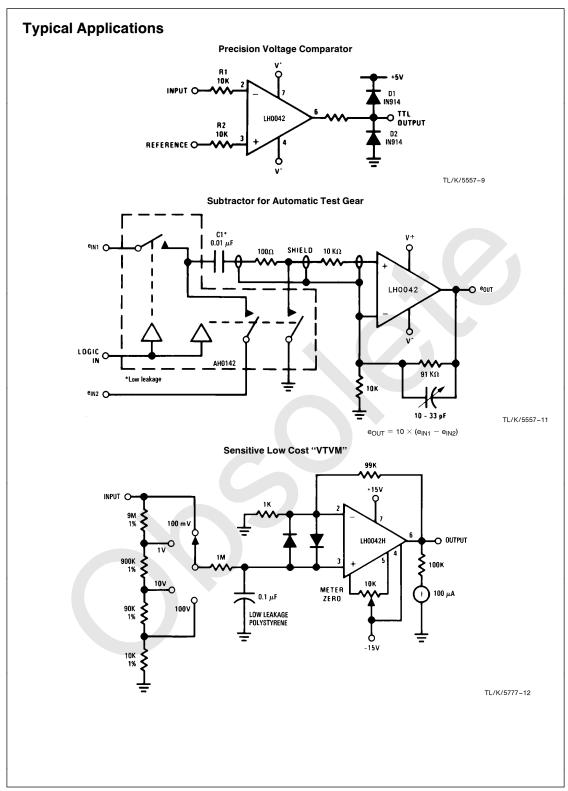
μs

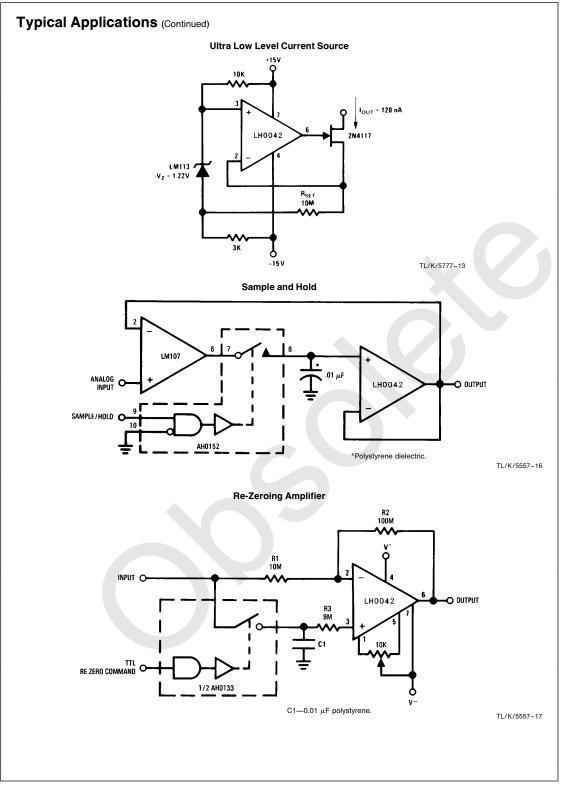
μs

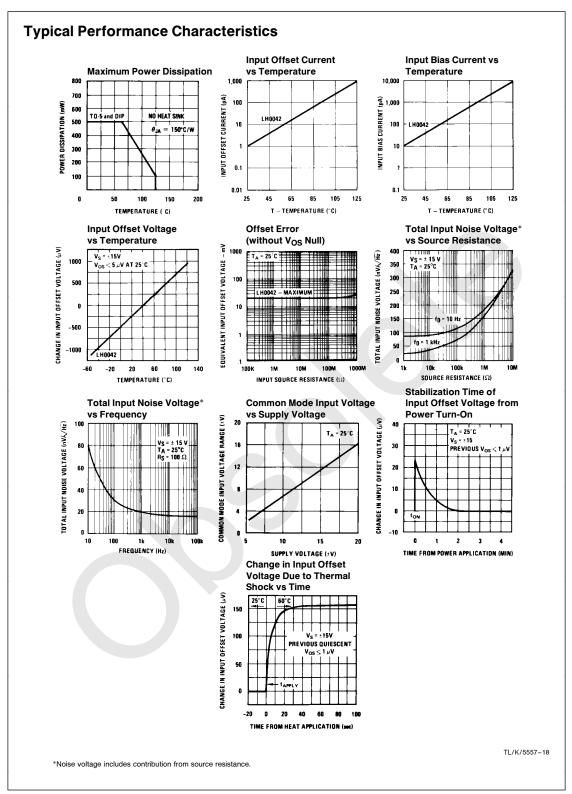
Small Signal Bandwidth

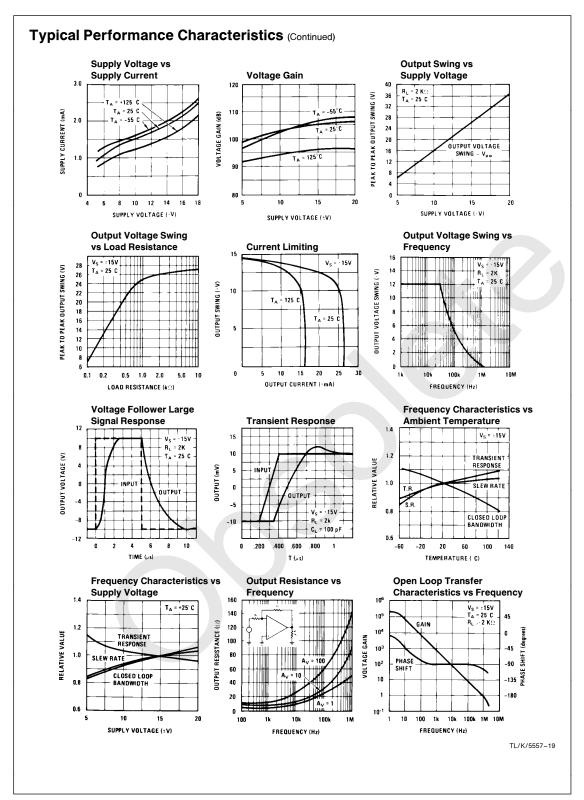

Settling Time (0.1%)

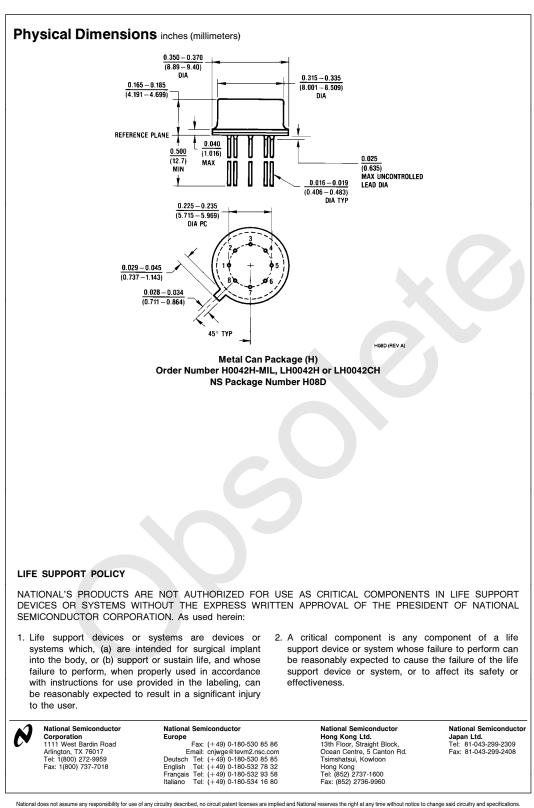

Overload Recovery


 $\Delta V_{IN} = 10V$


Rise Time


Overshoot





IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		
		u Hama Dawa	a O a Al a a m

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated