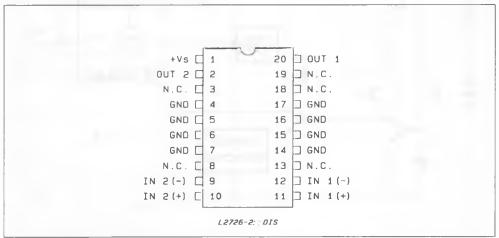
SGS-THOMSON MICROELECTRONICS

L2726

LOW DROP DUAL POWER OPERATIONAL AMPLIFIER

ADVANCE DATA

- OUTPUT CURRENT TO 1A
- OPERATES AT LOW VOLTAGES
- SINGLE OR SPLIT SUPPLY
- LARGE COMMON-MODE AND DIFFERENTIAL MODE RANGE
- LOW INPUT OFFSET VOLTAGE
- GROUND COMPATIBLE INPUTS
- LOW SATURATION VOLTAGE
- THERMAL SHUTDOWN
- CLAMP DIODE

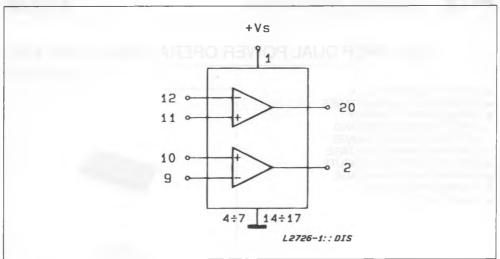

DESCRIPTION

The L2726 is a monolithic integrated circuit in SO-20 package intended for use as power operational amplifiers in a wide range of applications including servo amplifiers and power supplies.

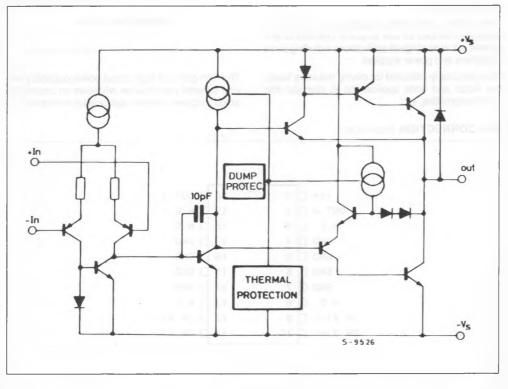
It is particularly indicated for driving inductive loads, as motor and finds applications in compact-disc VCR automative, etc.

The high gain and high output power capability provide superior performance whatever an operational amplifier/power booster combination is required.

PIN CONNECTION (top view)



January 1989


This is advanced information on a new product now in development or undergoing evaluation. Details are subject to change without notice

L2726

BLOCK DIAGRAM

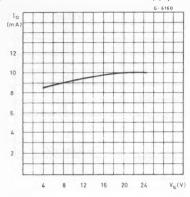
SCHEMATIC DIAGRAM (one section)

ABSOLUTE MAXIMUM RATINGS

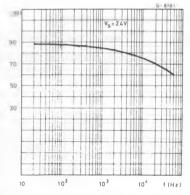
Symbol	Parameter	Value	Unit		
Vs	Supply Voltage	28	V		
Vs	Peak Supply Voltage (50ms)	50	V		
Vi	Input Voltage	Vs			
Vi	Differential Input Voltage	± Vs			
I ₀	DC Output Current	1	A		
۱ _ρ	Peak Output Current (non repetitive)	1.5			
Ptot	Power Dissipation at T _{amb} = 85°C T _{case} = 75°C	1 5	W W		
T _{stg} , T _j	Storage and Junction Temperature	- 40 to 150	°C		

THERMAL DATA

R _{th j-case} Thermal Resistance Junction-case R _{th j-amb} Thermal Resistance Junction-ambient (*)	Max	15.0	°C/W
	Max	65	°C/W


(*) With 4 sq. cm copper area heatsink.

ELECTRICAL CHARACTERISTICS (V_s = 24V, T_{amb} = 25°C unless otherwise specified)


Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
Vs	Single Supply Voltage			4		28	
Vs	Split Supply Voltage			± 2		± 14	V
I _s	Quiescent Drain Current	$V_{o} = \frac{V_{s}}{2}$	V _s = 24V		10	15	mA
			V _{\$} = 8V		9	15	
lb	Input Bias Current				0.2	1	μA
Vos	Input Offset Voltage					10	mV
los	Input Offset Current					100	nA
SR	Slew Rate				2		V/µs
В	Gain-bandwidth Product				1.2		MHz
Ri	Input Resistance			500			KΩ
Gv	O. L. Voltage Gain	f = 100Hz		70	80		dB
		f = 1KHz			60		
e _N	Input Noise Voltage	B = 22Hz to 22KHz			10		μV
IN	Input Noise Current				200		pА
CMR	Common Mode Rejection	f = 1KHz		66	84		dB
SVR	Supply Voltage Rejection	$f = 100Hz$ $R_G = 10K\Omega$ $V_R = 0.5V$	$V_{s} = 24V$ $V_{s} = \pm 12V$ $V_{s} = \pm 6V$	60	70 75 80		dB dB dB
VDROP(HIGH)		$V_{s} = \pm 2.5V$ to $\pm 12V$	$I_p = 100 \text{mA}$		0.7		V
			$I_p = 500 \text{mA}$		1.0	1.5	
VDROP(LOW)			$l_p = 100 \text{mA}$		0.3		V
,			l _p = 500mA		0.5	1.0	
Cs	Channel Separation	$f = 1 \text{KHz}$ $R_{L} = 10\Omega$ $G_{v} = 30 \text{dB}$	V _s = 24V		60		dB
			V _⊛ = 6V		60		
T _{sd}	Thermal Shutdown Junction Temperature				145		°C

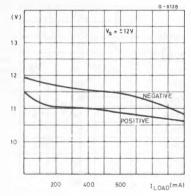


Figure 2 : Open Loop Gain vs. Frequency.

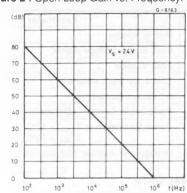


Figure 4 : Output Swing vs. Load Current $(V_s = \pm 5V)$.

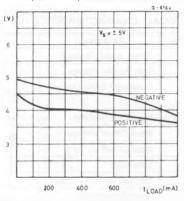
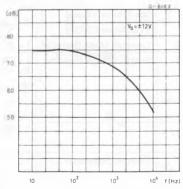



Figure 6 : Supply Voltage Rejection vs. Frequency.

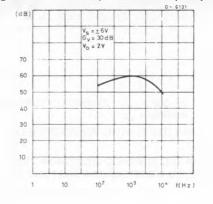


Figure 7 : Channel Separation vs. Frequency.

