
IMS T222
transputer

Drnrhos . .
Engineering Data

FEATURES
16 bit architecture
50 ns internal cycle time
20 MIPS (peak) instruction rate
IMS T222-20 is pin compatible with IMS T225-20
4 Kbytes on-chip static RAM
40 Mbytes/sec sustained data rate to internal memory
64 Kbytes directly addressable external memory
20 Mbytes/sec sustained data rate to external memory
950 ns response to interrupts
Four INMOS serial links 5/10/20 Mbits/sec
Bi-directional data rate of 2.4 Mbytes/sec per link
Internal timers of 1 /zs and 64 fis
Boot from ROM or communication links
Single 5 MHz clock input
Single +5V ±5% power supply
MIL-STD-883C processing is available

APPLICATIONS
Real time processing
Microprocessor applications
High speed multi processor systems
Industrial control
Robotics
System simulation
Digital signal processing
Telecommunications
Fault tolerant systems
Medical instrumentation

System
Services

Timers

4k bytes ^
of

On-chip sr
RAM

16

External 4.
Memory
Interface ^

16

42 1424 02 May 1989

1 Introduction
The IMS T222 transputer is a 16 bit CMOS microcomputer with 4 Kbytes on-chip RAM for high speed
processing, an external memory interface and four standard INMOS communication links. The instruction set
achieves efficient implementation of high level languages and provides direct support for the Occam model
of concurrency when using either a single transputer or a network. Procedure calls, process switching and
typical interrupt latency are sub-microsecond. A device running at 20 MHz achieves an instruction throughput
of 20 MIPS peak. The extended temperature version of the device complies with MIL-STD-883C.

For convenience of description, the IMS T222 operation is split into the basic blocks shown in figure 1.1.

vcc
G N D

C ap P lu s
C ap M in u s

R eset
A na lyse

E rro r
B o o tF ro m R O M

C lo ck ln

D isab le ln tR am

P ro c C lo c k O u t
n o tM em C E

notM em W rBO -1

M em W ait
M em B A cc

M em R eq
M em G ran ted

L in kS p ec ia l
L inkO Special
L ink123S p ec ia l

LinklnO
LinkOutO

L in k ln l
L in k O u tl

L ink ln2
L inkO ut2

L in k ln 3
L in kO u t3
E ven tR eq
E ven tA ck

M em DO-15

M em AO-15

Figure 1.1 IMS T222 block diagram

The IMS T222 can directly access a linear address space of 64 Kbytes. The 16 bit wide non-multiplexed
external memory interface provides a data rate of up to 2 bytes every 100 nanoseconds (20 Mbytes/sec) for
a 20 MHz device.

System Services include processor reset and bootstrap control, together with facilities for error analysis.

The INMOS communication links allow networks of transputers to be constructed by direct point to point
connections with no external logic. The links support the standard operating speed of 10 Mbits/sec, but also
operate at 5 or 20 Mbits/sec. The links support overlapped acknowledge; each IMS T222 link can transfer
data bi-directionally at up to 2.05 Mbytes/sec.

The IMS T222 is designed to implement the Occam language, detailed in the Occam Reference Manual,
but also efficiently supports other languages such as C and Pascal. Access to the transputer at machine
level is seldom required, but if necessary refer to the Transputer Instruction Set - A Com piler W riters’ Guide.

This data sheet supplies hardware implementation and characterisation details for the IMS T222. It is intended
to be read in conjunction with the Transputer Architecture chapter, which details the architecture of the
transputer and gives an overview of Occam.

2 Pin designations

Table 2.1 IMS T222 system services

Pin In /O ut Function
V C C , G N D Power supply and return
C ap P lu s , C ap M in u s External capacitor for internal clock power supply
C lo ck ln in Input clock
R eset in System reset
E rror out Error indicator
A n a lyse in Error analysis
B o o tF ro m R o m in Bootstraps from external ROM or from link
D isab le ln tR A M in Disable internal RAM
H o ldT oG N D Must be connected to G N D

Table 2.2 IMS T222 external memory interface

Pin In /O ut Function
P ro c C lo c k O u t
M em AO-15
M em DO-15
notM em W rBO -1
n o tM em C E
M em B A cc
M em W ait
M em R eq
M em G ran ted

out
out

in/out
out
out
in
in
in

out

Processor clock
Sixteen address lines
Sixteen data lines
Two byte-addressing write strobes
Chip enable
Byte access mode selector
Memory cycle extender
Direct memory access request
Direct memory access granted

Table 2.3 IMS T222 event

Pin In /O ut Function
E ven tR eq in Event request
E ven tA ck out Event request acknowledge

Table 2.4 IMS T222 link

In /O ut Function
LinklnO -3 in Four serial data input channels
LinkO utO -3 out Four serial data output channels
L in kS p ec ia l in Select non-standard speed as 5 or 20 Mbits/sec
LinkO Special in Select special speed for Link 0
L in k 1 23S p ec ia l in Select special speed for Links 1 ,2,3

Signal names are prefixed by not if they are active low, otherwise they are active high.
Pinout details for various packages are given on page 448.

3 Processor

The 16 bit processor contains instruction processing logic, instruction and work pointers, and an operand
register. It directly accesses the high speed 4 Kbyte on-chip memory, which can store data or program.
Where larger amounts of memory or programs in ROM are required, the processor has access to 64 Kbytes
of memory via the External Memory Interface (EMI).

3.1 R eg is te rs

The design of the transputer processor exploits the availability of fast on-chip memory by having only a small
number of registers; six registers are used in the execution of a sequential process. The small number of
registers, together with the simplicity of the instruction set, enables the processor to have relatively simple
(and fast) data-paths and control logic. The six registers are:

The workspace pointer which points to an area of store where local variables are kept.

The instruction pointer which points to the next instruction to be executed.

The operand register which is used in the formation of instruction operands.

The A, B and C registers which form an evaluation stack.

A, B and C are sources and destinations for most arithmetic and logical operations. Loading a value into the
stack pushes B into C, and A into B, before loading A. Storing a value from A, pops B into A and C into B.

Expressions are evaluated on the evaluation stack, and instructions refer to the stack implicitly. For example,
the add instruction adds the top two values in the stack and places the result on the top of the stack. The use of
a stack removes the need for instructions to respecify the location of their operands. Statistics gathered from a
large number of programs show that three registers provide an effective balance between code compactness
and implementation complexity.

No hardware mechanism is provided to detect that more than three values have been loaded onto the stack.
It is easy for the compiler to ensure that this never happens.

Any location in memory can be accessed relative to the workpointer register, enabling the workspace to be
of any size.

Further register details are given in Transputer Instruction Set - A Com piler W riters’ Guide.

Figure 3.1 Registers

3.2 Instructions

The instruction set has been designed for simple and efficient compilation of high-level languages. All in­
structions have the same format, designed to give a compact representation of the operations occurring most
frequently in programs.

Each instruction consists of a single byte divided into two 4-bit parts. The four most significant bits of the byte
are a function code and the four least significant bits are a data value.

Figure 3.2 Instruction format

3.2.1 D irec t fu n c tio n s

The representation provides for sixteen functions, each with a data value ranging from 0 to 15. Ten of these,
shown in table 3.1, are used to encode the most important functions.

Table 3.1 Direct functions

load constant add constant
load loca l store loca l load loca l p o in te r
load non-loca l store non-loca l
ju m p conditional jum p ca ll

The most common operations in a program are the loading of small literal values and the loading and storing
of one of a small number of variables. The load constant instruction enables values between 0 and 15 to be
loaded with a single byte instruction. The load loca l and store loca l instructions access locations in memory
relative to the workspace pointer. The first 16 locations can be accessed using a single byte instruction.

The load non-loca l and store non-loca l instructions behave similarly, except that they access locations in
memory relative to the A register. Compact sequences of these instructions allow efficient access to data
structures, and provide for simple implementations of the static links or displays used in the implementation
of high level programming languages such as Occam, C or Pascal.

3.2 .2 P re fix fu n c tio n s

Two more function codes allow the operand of any instruction to be extended in length; pre fix and negative
prefix.

All instructions are executed by loading the four data bits into the least significant four bits of the operand
register, which is then used as the instruction’s operand. All instructions except the prefix instructions end by
clearing the operand register, ready for the next instruction.

The p re fix instruction loads its four data bits into the operand register and then shifts the operand register up
four places. The negative p re fix instruction is similar, except that it complements the operand register before
shifting it up. Consequently operands can be extended to any length up to the length of the operand register
by a sequence of prefix instructions. In particular, operands in the range -256 to 255 can be represented
using one prefix instruction.

The use of prefix instructions has certain beneficial consequences. Firstly, they are decoded and executed
in the same way as every other instruction, which simplifies and speeds instruction decoding. Secondly, they
simplify language compilation by providing a completely uniform way of allowing any instruction to take an
operand of any size. Thirdly, they allow operands to be represented in a form independent of the processor
wordlength.

3 .2 .3 In d irec t fu n c tio n s

The remaining function code, operate, causes its operand to be interpreted as an operation on the values
held in the evaluation stack. This allows up to 16 such operations to be encoded in a single byte instruction.
However, the prefix instructions can be used to extend the operand of an operate instruction just like any
other. The instruction representation therefore provides for an indefinite number of operations.

Encoding of the indirect functions is chosen so that the most frequently occurring operations are represented
without the use of a prefix instruction. These include arithmetic, logical and comparison operations such as
add, exclusive o r and grea ter than. Less frequently occurring operations have encodings which require a
single prefix operation.

3 .2 .4 E xp ress io n eva lu a tio n

Evaluation of expressions sometimes requires use of temporary variables in the workspace, but the number
of these can be minimised by careful choice of the evaluation order.

Table 3.2 Expression evaluation

P rogram _______ M n em o n ic
x := 0

x := #24

x := y + z

Idc 0
s tl X

p fix 2
Idc 4
s tl X

Id l y
Id l z
add
s tl X

3 .2 .5 E ffic ien cy o f e n co d in g

Measurements show that about 70% of executed instructions are encoded in a single byte; that is, without
the use of prefix instructions. Many of these instructions, such as load constant and add require just one
processor cycle.

The instruction representation gives a more compact representation of high level language programs than
more conventional instruction sets. Since a program requires less store to represent it, less of the memory
bandwidth is taken up with fetching instructions. Furthermore, as memory is word accessed the processor
will receive two instructions for every fetch.

Short instructions also improve the effectiveness of instruction pre-fetch, which in turn improves processor
performance. There is an extra word of pre-fetch buffer, so the processor rarely has to wait for an instruction
fetch before proceeding. Since the buffer is short, there is little time penalty when a jump instruction causes
the buffer contents to be discarded.

3.3 Processes and concurrency

A process starts, performs a number of actions, and then either stops without completing or terminates
complete. Typically, a process is a sequence of instructions. A transputer can run several processes in
parallel (concurrently). Processes may be assigned either high or low priority, and there may be any number
of each (page 407).

The processor has a microcoded scheduler which enables any number of concurrent processes to be exe­
cuted together, sharing the processor time. This removes the need for a software kernel.

At any time, a concurrent process may be

Active - Being executed.
- On a list waiting to be executed.

Inactive - Ready to input.
- Ready to output.
- Waiting until a specified time.

The scheduler operates in such a way that inactive processes do not consume any processor time. It allocates
a portion of the processor’s time to each process in turn. Active processes waiting to be executed are held
in two linked lists of process workspaces, one of high priority processes and one of low priority processes
(page 407). Each list is implemented using two registers, one of which points to the first process in the list,
the other to the last. In the Linked Process List figure 3.3, process S is executing and P, O and R are active,
awaiting execution. Only the low priority process queue registers are shown; the high priority process ones
perform in a similar manner.

Registers
FPtrl (Front)

BPtrl (Back)

Workspace

Next Inst

Operand

Locals

Q

Program

Figure 3.3 Linked process list

Table 3.3 Priority queue control registers

Function H igh P riority Low P rio rity
Pointer to front of active process list
Pointer to back of active process list

FptrO
BptrO

F p tn
B p tr l

Each process runs until it has completed its action, but is descheduled whilst waiting for communication from
another process or transputer, or for a time delay to complete. In order for several processes to operate in
parallel, a low priority process is only permitted to run for a maximum of two time slices before it is forcibly
descheduled at the next descheduling point (page 410). The time slice period is 5120 cycles of the external
5 MHz clock, giving ticks approximately 1 ms apart.

A process can only be descheduled on certain instructions, known as descheduling points (page 410). As a
result, an expression evaluation can be guaranteed to execute without the process being timesliced part way
through.

Whenever a process is unable to proceed, its instruction pointer is saved in the process workspace and
the next process taken from the list. Process scheduling pointers are updated by instructions which cause
scheduling operations, and should not be altered directly. Actual process switch times are less than 1 ^s, as
little state needs to be saved and it is not necessary to save the evaluation stack on rescheduling.

The processor provides a number of special operations to support the process model, including sta rt process
and end process. When a main process executes a parallel construct, sta rt p rocess instructions are used
to create the necessary additional concurrent processes. A sta rt process instruction creates a new process
by adding a new workspace to the end of the scheduling list, enabling the new concurrent process to be
executed together with the ones already being executed. When a process is made active it is always added
to the end of the list, and thus cannot pre-empt processes already on the same list.

The correct termination of a parallel construct is assured by use of the end process instruction. This uses
a workspace location as a counter of the parallel construct components which have still to terminate. The
counter is initialised to the number of components before the processes are started. Each component ends
with an end p rocess instruction which decrements and tests the counter. For all but the last component, the
counter is non zero and the component is descheduled. For the last component, the counter is zero and the
main process continues.

3 .4 P rio rity

The IMS T222 supports two levels of priority. Priority 1 (low priority) processes are executed whenever there
are no active priority 0 (high priority) processes.

High priority processes are expected to execute for a short time. If one or more high priority processes are
able to proceed, then one is selected and runs until it has to wait for a communication, a timer input, or until
it completes processing.

If no process at high priority is able to proceed, but one or more processes at low priority are able to proceed,
then one is selected.

Low priority processes are periodically timesliced to provide an even distribution of processor time between
computationally intensive tasks.

If there are n low priority processes, then the maximum latency from the time at which a low priority process
becomes active to the time when it starts processing is 2n-2 timeslice periods. It is then able to execute for
between one and two timeslice periods, less any time taken by high priority processes. This assumes that
no process monopolises the transputer’s time; i.e. it has a distribution of descheduling points (page 410).

Each timeslice period lasts for 5120 cycles of the external 5 MHz input clock (approximately 1 ms at the
standard frequency of 5 MHz).

If a high priority process is waiting for an external channel to become ready, and if no other high priority
process is active, then .the interrupt latency (from when the channel becomes ready to when the process
starts executing) is typically 19 processor cycles, a maximum of 53 cycles (assuming use of on-chip RAM).

3.5 C o m m u n ic a tio n s

Communication between processes is achieved by means of channels. Process communication is point-to-
point, synchronised and unbuffered. As a result, a channel needs no process queue, no message queue and
no message buffer.

A channel between two processes executing on the same transputer is implemented by a single word in
memory; a channel between processes executing on different transputers is implemented by point-to-point

links. The processor provides a number of operations to support message passing, the most important being
input m essage and output message.

The inpu t m essage and output m essage instructions use the address of the channel to determine whether
the channel is internal or external. Thus the same instruction sequence can be used for both, allowing a
process to be written and compiled without knowledge of where its channels are connected.

The process which first becomes ready must wait until the second one is also ready. A process performs an
input or output by loading the evaluation stack with a pointer to a message, the address of a channel, and
a count of the number of bytes to be transferred, and then executing an input m essage or output m essage
instruction. Data is transferred if the other process is ready. If the channel is not ready or is an external one
the process will deschedule.

3.6 T im ers

The transputer has two 16 bit timer clocks which ‘tick’ periodically. The timers provide accurate process
timing, allowing processes to deschedule themselves until a specific time.

One timer is accessible only to high priority processes and is incremented every microsecond, cycling com­
pletely in approximately 65 milliseconds. The other is accessible only to low priority processes and is incre­
mented every 64 microseconds, giving exactly 15625 ticks in one second. It has a full period of approximately
four seconds.

Table 3.4 Timer registers

ClockO
C io ck l
TNextRegO
TN extR egt

Current value of high priority (level 0) process clock
Current value of low priority (level 1) process clock
Indicates time of earliest event on high priority (level 0) timer queue
Indicates time of earliest event on low priority (level 1) timer queue

The current value of the processor clock can be read by executing a load tim er instruction. A process can
arrange to perform a tim er input, in which case it will become ready to execute after a specified time has
been reached. The tim er inpu t instruction requires a time to be specified. If this time is in the ‘past’ then the
instruction has no effect. If the time is in the ‘future’ then the process is descheduled. When the specified
time is reached the process is scheduled again.

Figure 3.4 shows two processes waiting on the timer queue, one waiting for time 21, the other for time 31.

Figure 3.4 Timer registers

4 Instruction set summary
The Function Codes table 4.7. gives the basic function code set (page 404). Where the operand is less
than 16, a single byte encodes the complete instruction. If the operand is greater than 15, one prefix
instruction (pfix) is required for each additional four bits of the operand. If the operand is negative the first
prefix instruction will be nfix.

Table 4.1 prefix coding

M n em o n ic
Function

co d e
M em o ry

c o d e
Idc #3 #4 #43

Idc #35
is co d e d as

p fix #3 #2 #23
idc #5 #4 #45

Idc #987
is co d e d as

p fix #9 #2 #29
p fix #8 #2 #28
Idc #7 #4 #47

Idc -31 (Idc #FFE1)
is co d ed as

nfix #1 #6 #61
Idc #1 #4 #41

Tables 4.8 to 4.17 give details of the operation codes. Where an operation code is less than 16 (e.g. add :
operation code 05), the operation can be stored as a single byte comprising the operate function code F and
the operand (5 in the example). Where an operation code is greater than 15 (e.g. ladd: operation code 16),
the p re fix function code 2 is used to extend the instruction.

Table 4.2 operate coding

M n em o n ic
Function

co d e
M em o ry

c o d e
add (op. code #5) #F5

is c o d e d as
opr add #F #F5

ladd (op. code #16) #21F6
is co d e d as

p fix #1 #2 #21
opr #6 #F #F6

The Processor Cycles column refers to the number of periods TPCLPCL taken by an instruction executing
in internal memory. The number of cycles is given for the basic operation only; where the memory code
for an instruction is two bytes, the time for the pre fix function (one cycle) should be added. For a 20 MHz
transputer one cycle is 50 ns. Some instruction times vary. Where a letter is included in the cycles column it
is interpreted from table 4.3.

Table 4.3 Instruction set interpretation

Ident In terp re ta tio n
b Bit number of the highest bit set in register A. Bit 0 is the least significant bit.
n Number of places shifted.
w Number of words in the message. Part words are counted as full words. If the message

is not word aligned the number of words is increased to include the part words at either
end of the message.

The DE column of the tables indicates the descheduling/error features of an instruction as described in
table 4.4.

Table 4.4 Instruction features

Ident Feature S ee page:
D
E

The instruction is a descheduling point
The instruction will affect the E rror flag

410
410, 419

4.1 D esch ed u lin g p o in ts

The instructions in table 4.5 are the only ones at which a process may be descheduled (page 406). They are
also the ones at which the processor will halt if the A n a lyse pin is asserted (page 418).

Table 4.5 Descheduling point instructions

input m essage output m essage output byte outpu t word
tim er a lt wait tim er input stop on error a lt wait
jum p loop end end p rocess stop process

4 .2 E rro r in s tru c tio n s

The instructions in table 4.6 are the only ones which can affect the E rror flag (page 419) directly.

Table 4.6 Error setting instructions

add add constant subtract
m ultip ly divide rem ainder
long add long subtract long divide
se t error testerr
check word check subscript from 0 check single check count from 1

Table 4.7 IMS T222 function codes

Function
Code

Memory
Code Mnemonic

Processor
Cycles Name

D
E

0 OX j 3 jump D
1 1X Idlp 1 load local pointer
2 2X pfix 1 prefix
3 3X Idnl 2 load non-local
4 4X Idc 1 load constant
5 5X Idnlp 1 load non-local pointer
6 6X nfix 1 negative prefix
7 7X Idl 2 load local
8 8X adc 1 add constant E
9 9X call 7 call
A AX cj 2 conditional jump (not taken)

4 conditional jump (taken)
B BX ajw 1 adjust workspace
C CX eqc 2 equals constant
D DX stl 1 store local
E EX stnl 2 store non-local
F FX opr - operate

Table 4.8 IMS T222 arithmetic/logical operation codes

Operation
Code

Memory
Code Mnemonic

Processor
Cycles Name

D
E

46 24F6 and 1 and
4B 24FB or 1 or
33 23F3 xor 1 exclusive or
32 23F2 not 1 bitwise not
41 24F1 shl n+2 shift left
40 24F0 shr n+2 shift right

05 F5 add 1 add E
OC FC sub 1 subtract E
53 25F3 mul 23 multiply E
2C 22 FC div 24 divide E
1F 21FF rem 21 remainder E
09 F9 gt 2 greater than
04 F4 diff 1 difference
52 25F2 sum 1 sum
08 F8 prod b+4 product

Table 4.9 IMS T222 long arithmetic operation codes

Operation
Code

Memory
Code Mnemonic

Processor
Cycles Name

D
E

16 21F6 ladd 2 long add E
38 23F8 Isub 2 long subtract E
37 23F7 Isum 3 long sum
4F 24FF Idiff 3 long diff
31 23F1 Imul 17 long multiply
1A 21 FA Idiv 19 long divide E
36 23F6 Ishl n+3 long shift left (n<16)

n-12 long shift left(n>16)
35 23F5 Ishr n+3 long shift right (n<16)

n-12 long shift right (n>16)
19 21F9 norm n+5 normalise (n<16)

n-10 normalise (n>16)
3 normalise (n=32)

Table 4.10 IMS T222 general operation codes

Operation
Code

Memory
Code Mnemonic

Processor
Cycles Name

D
E

00 F0 rev 1 reverse

3A 23 FA xword 4 extend to word
56 25F6 cword 5 check word E
1D 21FD xdble 2 extend to double
4C 24FC csngl 3 check single E
42 24F2 mint 1 minimum integer

Table 4.11 IMS T222 indexing/array operation codes

Operation
Code

Memory
Code Mnemonic

Processor
Cycles Name

D
E

02 F2 bsub 1 byte subscript
0A FA wsub 2 word subscript
34 23F4 bent 2 byte count
3F 23FF went 4 word count
01 F1 lb 5 load byte
3B 23FB sb 4 store byte

4A 24 FA move 2w+8 move message

Table 4.12 IMS T222 timer handling operation codes

O p era tio n
C o d e

M em o ry
C o d e M n em o n ic

P ro c e s s o r
C yc les N am e

D
E

22 22F2 Idtimer 2 load timer
2B 22FB tin 30 timer input (time future) D

4 timer input (time past) D
4E 24FE talt 4 timer alt start
51 25F1 taltwt 15 timer alt wait (time past) D

48 timer alt wait (time future) D
47 24F7 enbt 8 enable timer
2E 22FE dist 23 disable timer

Table 4.13 IMS T222 input/output operation codes

O p era tio n
C o d e

M em o ry
C o d e M n em o n ic

P ro cesso r
C ycles N am e

D
E

07 F7 in 2w+19 input message D
OB FB out 2w+19 output message D
OF FF outword 23 output word D
0E FE outbyte 23 output byte D

43 24F3 alt 2 alt start
44 24F4 altwt 5 alt wait (channel ready) D

17 alt wait (channel not ready) D
45 24F5 altend 4 alt end

49 24F9 enbs 3 enable skip
30 23 F0 diss 4 disable skip

12 21F2 resetch 3 reset channel
48 24F8 enbc 7 enable channel (ready)

5 enable channel (not ready)
2F 22FF disc 8 disable channel

Table 4.14 IMS T222 control operation codes

O p era tio n
C o d e

M em o ry
C ode M n em o n ic

P ro cesso r
C yc les N am e

D
E

20 22F0 ret 5 return
1B 21 FB Idpi 2 load pointer to instruction
3C 23 FC gajw 2 general adjust workspace
06 F6 gcall 4 general call
21 22F1 lend 10 loop end (loop) D

5 loop end (exit) D

Table 4.15 IMS T222 scheduling operation codes

O p eratio n
C o d e

M em o ry
C o d e M n em o n ic

P ro c e s s o r
C yc les N am e

D
E

OD FD startp 12 start process D
03 F3 endp 13 end process D
39 23F9 runp 10 run process
15 21F5 stopp 11 stop process
1E 21FE Idpri 1 load current priority

Table 4.16 IMS T222 error handling operation codes

O p eratio n
C o d e

M em o ry
C o d e M n em o n ic

P ro c e s s o r
C ycles N am e

D
E

13 21F3 csubO 2 check subscript from 0 E
4D 24FD ccntl 3 check count from 1 E
29 22F9 testerr 2 test error false and clear (no error)

3 test error false and clear (error)
10 21F0 seterr 1 set error E
55 25F5 stoperr 2 stop on error (no error) D
57 25F7 clrhalterr 1 clear halt-on-error
58 25F8 sethalterr 1 set halt-on-error
59 25F9 testhalterr 2 test halt-on-error

Table 4.17 IMS T222 processor initialisation operation codes

O p era tio n
C o d e

M em o ry
C o d e M n em o n ic

P ro c e s s o r
C yc les N am e

D
E

2A 22 FA testpranal 2 test processor analysing
3E 23FE saveh 4 save high priority queue registers
3D 23FD savel 4 save low priority queue registers
18 21F8 sthf 1 store high priority front pointer
50 25 F0 sthb 1 store high priority back pointer
1C 21FC stlf 1 store low priority front pointer
17 21F7 stlb 1 store low priority back pointer
54 25F4 sttimer 1 store timer

5 System services
System services include all the necessary logic to initialise and sustain operation of the device. They also
include error handling and analysis facilities.

5.1 P ow er

Power is supplied to the device via the V C C and G N D pins. Several of each are provided to minimise
inductance within the package. All supply pins must be connected. The supply must be decoupled close to
the chip by at least one 100 nF low inductance (e.g. ceramic) capacitor between V C C and G N D . Four layer
boards are recommended; if two layer boards are used, extra care should be taken in decoupling.

Input voltages must not exceed specification with respect to V C C and G N D , even during power-up and power­
down ramping, otherwise la tchup can occur. CMOS devices can be permanently damaged by excessive
periods of latchup.

5 .2 C ap P lu s , C a p M in u s

The internally derived power supply for internal clocks requires an external low leakage, low inductance 1/xF
capacitor to be connected between C ap P lu s and C ap M in u s . A ceramic capacitor is preferred, with an
impedance less than 3 Ohms between 100 KHz and 20 MHz. If a polarised capacitor is used the negative
terminal should be connected to C ap M in u s . Total PCB track length should be less than 50 mm. The
connections must not touch power supplies or other noise sources.

< o o

h
=

H

C apP lus P.C.B. track
_____I_______

Phase-locked
loops

Decoupling
=4= capacitor

| 1/*F

o
G N D -3 -

C ap M in u s P.C.B. track

Figure 5.1 Recommended PLL decoupling

5 .3 C lo ck ln

Transputer family components use a standard clock frequency, supplied by the user on the C lo ck ln input.
The nominal frequency of this clock for all transputer family components is 5 MHz, regardless of device type,
transputer word length or processor cycle time. High frequency internal clocks are derived from C lo ck ln ,
simplifying system design and avoiding problems of distributing high speed clocks externally.

A number of transputer devices may be connected to a common clock, or may have individual clocks providing
each one meets the specified stability criteria. In a multi-clock system the relative phasing of C lo c k ln clocks
is not important, due to the asynchronous nature of the links. Mark/space ratio is unimportant provided the
specified limits of C lo ck ln pulse widths are met.

Oscillator stability is important. C lo ck ln must be derived from a crystal oscillator; RC oscillators are not
sufficiently stable. C lo c k ln must not be distributed through a long chain of buffers. Clock edges must be
monotonic and remain within the specified voltage and time limits.

Table 5.1 Input clock

S Y M B O L P A R A M E T E R M IN N O M M A X U N ITS N O TE
TDCLDCH Clockln pulse width low 40 ns 1
TDCHDCL Clockln pulse width high 40 ns 1
TDCLDCL Clockln period 200 ns 1,2,4
TDCerror Clockln timing error ±0.5 ns 1,3
TDC1DC2 Difference in Clockln for 2 linked devices 400 ppm 1,4
TDCr Clockln rise time 10 ns 1,5
TDCf Clockln fall time 8 ns 1,5

Notes

1 These paramters are not tested.

2 Measured between corresponding points on consecutive falling edges.

3 Variation of individual falling edges from their nominal times.

4 This value allows the use of 200ppm crystal oscillators for two devices connected together by a link.

5 Clock transitions must be monotonic within the range VIH to VIL (table 10.3).

5 .4 R eset

R eset can go high with V C C , but must at no time exceed the maximum specified voltage for V IH . After V CC
is valid C lo ck ln should be running for a minimum period T D C V R L before the end of R eset. The falling edge
of R eset initialises the transputer and starts the bootstrap routine. Link outputs are forced low during reset;
link inputs and E ven tR eq should be held low. Memory request (DMA) must not occur whilst R eset is high but
can occur before bootstrap (page 431). If B ootFrom R om is high bootstrapping will take place immediately
after R eset goes low, using data from external memory; otherwise the transputer will await an input from any
link. The processor will be in the low priority state.

5 .5 B o o ts trap

The transputer can be bootstrapped either from a link or from external ROM. To facilitate debugging, B o o t­
F rom R om may be dynamically changed but must obey the specified timing restrictions. It is sampled once
only by the transputer, before the first instruction is executed after R eset is taken low.

If B o otFrom R om is connected high (e.g. to VCC) the transputer starts to execute code from the top two
bytes in external memory, at address #7FFE. This location should contain a backward jump to a program

in ROM. Following this access, B o o tF ro m R o m may be taken low if required. The processor is in the low
priority state, and the W register points to M em Start (page 420).

Table 5.2 Reset and Analyse

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TPVRH Power valid before Reset 10 ms
TRHRL Reset pulse width high 8 Clockln 1
TDCVRL Clockln running before Reset end 10 ms 2
TAHRH Analyse setup before Reset 3 ms
TRLAL Analyse hold after Reset end 1 Clockln 1
TBRVRL BootFromRom setup 0 ms
TRLBRX BootFromRom hold after Reset 0 ms 3
TALBRX BootFromRom hold after Analyse 3

Notes

1 Full periods of Clockln TDCLDCL required.

2 At power-on reset.

3 Must be stable until after end of bootstrap period. See Bootstrap section.

C lo c k ln 1 V 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 W 7 7 7 7 7 7 7
j T D C V R L

V C C

T P V R H / h T R H R L

\ ,R eset j jr y\
TBRVRL>H “* TR LB R X 11

-----------------*1
B o o tF ro m R o m / / / II- -

Figure 5.3 Transputer reset timing with Analyse low

R eset

A n a ly s e

B o o tF ro m R o m

Figure 5.4 Transputer reset and analyse timing

If B o o tF ro m R o m Is connected low (e.g. to G N D) the transputer will wait for the first bootstrap message to
arrive on any one of its links. The transputer is ready to receive the first byte on a link within two processor
cycles T P C L P C L after R eset goes low.

If the first byte received (the control byte) is greater than 1 it is taken as the quantity of bytes to be input. The
following bytes, to that quantity, are then placed in internal memory starting at location MemStart. Following
reception of the last byte the transputer will start executing code at M em Start as a low priority process.
B o o tF ro m R o m may be taken high after reception of the last byte, if required. The memory space immediately
above the loaded code is used as work space. Messages arriving on other links after the control byte has
been received and on the bootstrapping link after the last bootstrap byte will be retained until a process inputs
from them.

5 .6 P eek and p o ke

Any location in internal or external memory can be interrogated and altered when the transputer is waiting
for a bootstrap from link. If the control byte is 0 then four more bytes are expected on the same link. The
first two byte word is taken as an internal or external memory address at which to poke (write) the second
two byte word. If the control byte is 1 the next two bytes are used as the address from which to peek (read)
a word of data; the word is sent down the output channel of the same link.

Following such a peek or poke, the transputer returns to its previously held state. Any number of accesses
may be made in this way until the control byte is greater than 1 , when the transputer will commence reading
its bootstrap program. Any link can be used, but addresses and data must be transmitted via the same link
as the control byte.

5 .7 A n a ly s e

If A na lyse is taken high when the transputer is running, the transputer will halt at the next descheduling point
(page 41 0). From A n a lyse being asserted, the processor will halt within three time slice periods plus the
time taken for any high priority process to complete. As much of the transputer status is maintained as is
necessary to permit analysis of the halted machine. Processor flags E rro r and H a ltO n E rro r are not altered
at reset, whether A n a ly s e is asserted or not.

Input links will continue with outstanding transfers. Output links will not make another access to memory
for data but will transmit only those bytes already in the link buffer. Providing there is no delay in link
acknowledgement, the links should be inactive within a few microseconds of the transputer halting.

R eset should not be asserted before the transputer has halted and link transfers have ceased. If B ootFrom ­
Rom is high the transputer will bootstrap as soon as A n a lyse is taken low, otherwise it will await a control
byte on any link. If A n a lyse is taken low without R eset going high the transputer state and operation are
undefined. After the end of a valid A n a lyse sequence the registers have the values given in table 5.3.

Table 5.3 Register values after Analyse

I M em Start if bootstrapping from a link, or the external memory bootstrap address if
bootstrapping from ROM.

W M em Start if bootstrapping from ROM, or the address of the first free word after the
bootstrap program if bootstrapping from link.

A The value of / when the processor halted.
B The value of W when the processor halted, together with the priority of the process

when the transputer was halted (i.e. the 14/descriptor).
C The ID of the bootstrapping link if bootstrapping from link.

5.8 Error

The E rro r pin is connected directly to the internal Error flag and follows the state of that flag. If E rro r is
high it indicates an error in one of the processes caused, for example, by arithmetic overflow, divide by zero,
array bounds violation or software setting the flag directly (page 410). Once set, the Error flag is only cleared
by executing the instruction testerr. The error is not cleared by processor reset, in order that analysis can
identify any errant transputer (page 418).

A process can be programmed to stop if the E rror flag is set; it cannot then transmit erroneous data to other
processes, but processes which do not require that data can still be scheduled. Eventually all processes
which rely, directly or indirectly, on data from the process in error will stop through lack of data.

By setting the H altO nError flag the transputer itself can be programmed to halt if E rror becomes set. If Error
becomes set after H altO nError has been set, all processes on that transputer will cease but will not necessarily
cause other transputers in a network to halt. Setting H altO nError after E rror will not cause the transputer to
halt; this allows the processor reset and analyse facilities to function with the flags in indeterminate states.

An alternative method of error handling is to have the errant process or transputer cause all transputers to
halt. This can be done by applying the E rro r output signal of the errant transputer to the E ven tR eq pin of a
suitably programmed master transputer. Since the process state is preserved when stopped by an error, the
master transputer can then use the analyse function to debug the fault. When using such a circuit, note that
the E rror flag is in an indeterminate state on power up; the circuit and software should be designed with this
in mind.

Error checks can be removed completely to optimise the performance of a proven program; any unexpected
error then occurring will have an arbitrary undefined effect.

If a high priority process pre-empts a low priority one, status of the Error and H altO nError flags is saved
for the duration of the high priority process and restored at the conclusion of it. Status of the E rror flag is
transmitted to the high priority process but the H altO nError flag is cleared before the process starts. Either
flag can be altered in the process without upsetting the error status of any complex operation being carried
out by the pre-empted low priority process.

In the event of a transputer halting because of HaltO nError; the links will finish outstanding transfers before
shutting down. If A n a ly s e is asserted then all inputs continue but outputs will not make another access to
memory for data.

After halting due to the E rror flag changing from 0 to 1 whilst H altO nError is set, register / points two bytes
past the instruction which set Error. After halting due to the A n a lyse pin being taken high, register / points
one byte past the instruction being executed. In both cases / will be copied to register A

Figure 5.5 Error handling in a multi-transputer system

6 Memory
The IMS T222 has 4 Kbytes of fast internal static memory for high rates of data throughput. Each internal
memory access takes one processor cycle P ro c C lo c k O u t (page 422). The transputer can also access an
additional 60 Kbytes of external memory space. Internal and external memory are part of the same linear
address space. Internal RAM can be disabled by holding D isab le ln tR A M high. All internal addresses are
then mapped to external RAM. This pin should not be altered after R eset has been taken low.

IMS T222 memory is byte addressed, with words aligned on two-byte boundaries. The least significant byte
of a word is the lowest addressed byte.

The bits in a byte are numbered 0 to 7, with bit 0 the least significant. The bytes are numbered from 0, with
byte 0 the least significant. In general, wherever a value is treated as a number of component values, the
components are numbered in order of increasing numerical significance, with the least significant component
numbered 0. Where values are stored in memory, the least significant component value is stored at the
lowest (most negative) address.

Internal memory starts at the most negative address #8000 and extends to #8FFF. User memory begins at
#8024; this location is given the name MemStart.

The reserved area of internal memory below M em Start is used to implement link and event channels.

Two words of memory are reserved for timer use, TPtrLocO for high priority processes and TP trLocI for low
priority processes. They either indicate the relevant priority timer is not in use or point to the first process on
the timer queue at that priority level.

Values of certain processor registers for the current low priority process are saved in the reserved IntSaveLoc
locations when a high priority process pre-empts a low priority one.

External memory space starts at #9000 and extends up through #0000 to #7FFF. ROM bootstrapping code
must be in the most positive address space, starting at #7FFE. Address space immediately below this is
conventionally used for ROM based code.

hi M a ch in e m ap lo Byte address Word offsets Occam m ap
Reset Inst #7FFE

#0

#9000 - Start of external memory - #0800

#8 0 2 4 M em S tart M em S tart #12
EreglntSaveLoc #8022 \

STATUSIntSaveLoc #8020
CreglntSaveLoc #801E
BreglntSaveLoc #801C
AreglntSaveLoc #801A
IptrlntSaveLoc #8018

WdescIntSaveLoc #8016
TPtrLod #8014
TPtrLocO #8012

[>Note1 #08Event #8010 Event
Link 3 Input #800E #07 Link 3 Input
Link 2 Input #800C #06 Link 2 Input
Link 1 Input #800A #05 Link 1 Input
Link 0 Input #8008 #04 Link 0 Input

Link 3 Output #8006 #03 Link 3 Output
Link 2 Output #8004 #02 Link 2 Output
Link 1 Output #8002 #01 Link 1 Output
Link 0 Output #8000 J (Base of memory) #00 Link 0 Output

Notes
Figure 6.1 IMS T222 memory map

1 These locations are used as auxiliary processor registers and should not be manipulated by the user. Like
processor registers, their contents may be useful for implementing debugging tools (Analyse, page 418). For
details see Transputer Instruction Set - A Compiler Writers’ Guide.

7 External memory interface
The IMS T222 External Memory Interface (EMI) allows access to a 16 bit address space via separate address
and data buses. The data bus can be configured for either 16 bit or 8 bit memory access, allowing the use of
a single bank of byte-wide memory. Both word-wide and byte-wide access may be mixed in a single memory
system (page 428).

7.1 P ro c C lo c k O u t

This clock is derived from the internal processor clock, which is in turn derived from C lo ck ln . Its period is
equal to one internal microcode cycle time, and can be derived from the formula

T P C L P C L = T D C L D C L / P L L x

where T P C L P C L is the P ro c C lo c k O u t P erio d , T D C L D C L is the C lo ck ln P erio d and P LLx is the phase
lock loop factor for the relevant speed part, obtained from the ordering details (Ordering section).

Edges of the various external memory strobes are synchronised by, but do not all coincide with, rising or
falling edges of P ro cC lo ckO u t.

Table 7.1 P ro cC lo ckO u t

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TPCLPCL ProcClockOut period a-2 a a+2 ns 1,5
TPCHPCL ProcClockOut pulse width high b-7 b b+7 ns 2,5
TPCLPCH ProcClockOut pulse width low c ns 3,5
TPCstab ProcClockOut stability 8 % 4,5

Notes

1 a is TDCLDCL/PLLx.

2 b is 0.5*TPCLPCL (half the processor clock period).

3 c is TPCLPCL-TPCHPCL.

4 Stability is the variation of cycle periods between two consecutive cycles, measured at corresponding points on
the cycles.

5 This parameter is sampled and not 100% tested.

Figure 7.1 IMS T222 ProcClockOut timing

7.2 Tstates

The external memory cycle is divided into four T s ta tes with the following functions:

T1 Address and control setup time.

T2 Data setup time.

T 3 Data read/write.

T 4 Data and address hold after access.

Each T s ta te is half a processor cycle T P C L P C L long. An external memory cycle is always a complete number
of cycles T P C L P C L in length and the start of T1 always coincides with a rising edge of P ro cC lo ckO u t. T2
can be extended indefinitely by adding externally generated wait states of one complete processor cycle each.

7 .3 In tern a l access

During an internal memory access cycle the external memory interface address bus M em AO-15 reflects the
word address used to access internal RAM, notM em W rBO -1 and n o tM em C E are inactive and the data bus
M em D O -15 is tristated. This is true unless and until a DMA (memory request) activity takes place, when the
lines will be placed in a high impedance state by the transputer.

Bus activity is not adequate to trace the internal operation of the transputer in full, but may be used for
hardware debugging in conjuction with peek and poke (page 418).

7 .4 M em AO-15

External memory addresses are output on a non-multiplexed 16 bit bus. The address is valid at the start of
T1 and remains so until the end of T4, with the timing shown. Byte addressing is carried out internally by the
IMS T222 for read cycles. For write cycles the relevant bytes in memory are addressed by the write enables
n otM em W rB O -1.

The transputer places the address bus in a high impedance state during DMA.

7 .5 M em DO -15

The non-multiplexed data bus is 16 bits wide. Read cycle data may be set up on the bus at any time after
the start of T1, but must be valid when the IMS T222 reads it during T4. Data can be removed any time after
the rising edge of n o tM em C E , but must be off the bus no later than the middle of T1, which allows for bus
turn-around time before the data lines are driven at the start of T2 in a processor write cycle.

Write data is placed on the bus at the start of T 2 and removed at the end of T4. It is normally written into
memory in synchronism with n o tM em C E going high.

The data bus is high impedance except when the transputer is writing data. If only one byte is being written,
the unused 8 bits of the bus are high impedance at that time. In byte access mode M em D 8-15 are high
impedance during the external memory cycle which writes the most significant (second) byte (page 428).

If the data setup time for read or write is too short it can be extended by inserting wait states at the end of
T2 (page 429).

Table 7.2 Read

S Y M B O L P A R A M E T E R
T 222 -20 T222 -17

U N ITS N O TEM IN M A X MIN M A X
TAVEL Address valid before chip enable low 8 12 ns 1
TELEH Chip enable low 68 80 83 88 ns 1
TEHEL Delay before chip enable re-assertion 19 24 ns 1,2
TEHAX Address hold after chip enable high 3 12 ns 1
TELDrV Data valid from chip enable low 0 50 0 53 ns
TAVDrV Data valid from address valid 0 63 0 65 ns
TDrVEH Data setup before chip enable high 22 30 ns
TEHDrZ Data hold after chip enable high 0 20 0 24 ns
TWEHEL Write enable setup before chip enable low 18 24 ns 3
TPCHEL ProcClockOut high to chip enable low 8 12 ns 1

Notes

1 This parameter is common to read and write cycles and to byte-wide memory accesses.

2 These values assume back-to-back external memory accesses.

3 Timing is for both write enables notMemWrBO-1.

Tstates | T1 | T2 | T3 | T4 | T1 |

Figure 7.2 IMS T222 external read cycle

7 .6 notM em W rBO -1

Two write enables are provided, one to write each byte of the word. When writing a word, both write enables
are asserted; when writing a byte only the appropriate write enable is asserted. notM em W rBO addresses
the least significant byte. The write enables are active before the chip enable signal n o tM em C E becomes
active, thus reducing memory access time and the risk of bus contention.

The write enables are synchronised with the chip enable signal n o tM em C E , allowing them to be used without
n o tM em C E for simple designs.

Data may be strobed into memory using notM em W rBO -1 without the use of n o tM em C E , as the write enables
go high between consecutive external memory write cycles. The write enables are placed in a high impedance
state during DMA, and are inactive during internal memory access.

Table 7.3 Write

S Y M B O L P A R A M E T E R
T 2 22 -20 T222 -17

U NITS N O TEM IN M A X MIN M A X
TDwVEH Data setup before chip enable high 50 57 ns
TEHDwZ Data hold after write 5 25 12 17 ns
TDwZEL Write data invalid to next chip enable 1 12 ns
TWELEL Write enable setup before chip enable low -8 3 -4 0 ns 1
TEHWEH Write enable hold after chip enable high -3 6 0 4 ns 1

Notes

1 Timing is for both write enables notMemWrBO-1.

Tstates | T1 | T2 | T3 | T4 | T1 |

ProcClockOut / \ / \ / \

MemAO-15 X X
notMemCE \

K / X
TDwVEH

L * - TDwZEL

TEHDwZ
DataO-15)— ..<() K

1
TW ELEL ->■ I TEHW EH

notMemWrBO-3 L
Figure 7.3 IMS T222 external write cycle

P ro c C lo c k O u t

notM em W rBO -1

n o tM em C E

M em AO -15

M em DO -15

I X

I X -

Write Read Read X

X
Address X Address X Address

X --C

Figure 7.4 IMS T222 bus activity for 3 internal memory cycles

7.7 notM em CE

The active low signal n o tM em C E is used to enable external memory on both read and write cycles.

C lo ck ln
(5 MHz)

LlnkOln

LinkO O ut
L in k lln
L in k lO u t

L in k2 ln
L in k 2 0 u t

L in k3 ln
L in k 3 0 u t

R eset
A n a lyse
M em W ait
M em R eq

Figure 7.5 IMS T222 static RAM application

P r o c C lo c k O u t

M e m A 1 -1 5

M e m A O

n o tM e m C E

M e m D O -7

M e m D 8 -1 5

n o tM e m W rB O

n o t M e m W r B I

Tstate | T1 | T2 | T3 | T4 | T1 | T2

_y XX __/ V
ZX Address X

X
v _

s>— c
2 2 > -----------------

X X
Data x s s

X
X

Figure 7.6 IMS T222 Least significant byte write in word access mode

Tstate | T1 | T2 I T3 | T4 | T1 | T2 I T3 | T4 | T1

P r o c C lo c k O u t — / \ / .__________x
M e m A 1 -1 5 Z X Address X
M e m A O

n o tM e m C E

M e m D O -7

X X
X y --------------v X

2 > ^Data most significant byte^ - * ^

M e m D 8 - 1 5 ---------------- { f e ta most significant byte^--^

n o tM e m W rB O

n o t M e m W r B I

X
X

— — / / / / / / / \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x

Figure 7.7 IMS T222 Most significant byte write to byte-wide memory

7.8 Mem BAcc

The IMS T222 will, by default, perform word access at even memory locations. Access to byte-wide memory
can be achieved by taking M em B A cc high with the timing shown. Where all external memory operations are
to byte-wide memory, M em B A cc may be wired permanently high. The state of this signal is latched during
T2.

If M em B A cc is low then a full word will be accessed in one external memory cycle, otherwise the high and
low bytes of the word will be separately accessed during two consecutive cycles. The first (least significant)
byte is accessed at the word address (Mem AO is low). The second (most significant) byte is accessed at the
word address +1 (M em AO is high).

With M em B A c c high, the first cycle is identical with a normal word access cycle. However, it will be im­
mediately followed by another memory cycle, which will use Mem DO-7 to read or write the second (most
significant) byte of data. During this second cycle n o tM e m W rB I remains high, both for read and write, and
M em D 8-15 are high impedance. When writing a single byte with M em B A cc high, both the first and second
cycles are performed with notM em W rBO asserted in the appropriate cycle.

Table 7.4 Byte-wide memory access

S Y M B O L P A R A M E T E R
T222 -20 T 2 22 -17

U N ITS NO TEMIN M A X MIN M A X
TELBAH
TELBAL

MemBAcc high from chip enable
MemBAcc low from chip enable 32

12
29

15 ns
ns

Figure 7.8 IMS T222 word write to byte-wide memory

7.9 MemWait

Taking M em W ait high with the timing shown in the diagram will extend the duration of T2 by one processor
cycle T P C L P C L . One wait state comprises the pair W1 and W 2. M em W ait is sampled during T2, and should
not change state in this region. If M erpW ait is still high when sampled in W 2 then another wait period will be
inserted. This can continue indefinitely. Internal memory access is unaffected by the number of wait states
selected.

The wait state generator can be a simple digital delay line, synchronised to n otM em C E . The S in g le W ait
S ta te G e n e ra to r circuit in figure 7.10 can be extended to provide two or more wait states, as shown in
figure 7.11.

Table 7.5 Memory wait

S Y M B O L P A R A M E T E R
T 222 -20 T 222-17

U N ITS N O TEM IN M A X M IN M A X
TPCHWtH
TPCHWtL

MemWait asserted after ProcClockOut high
Wait low after ProcClockOut high 45

25
39

27 ns
ns

Tstate | T1 | T2 | W1 | W2 | T3 | T4 | T1 |

M e m D O -1 5 : > — c Data :> — c

n o tM e m W r B 0 -1 X x

Figure 7.9 IMS T222 memory wait timing

VCC — i »—
1/2 74F74

i ►— c s
— c R

n o tM em C E D Q ------------------► M em W ait
P ro c C lo c k O u t CP

Figure 7.10 Single wait state generator

Figure 7.11 Extendable wait state generator

7.10 M em Req, Mem Granted

Direct memory access (DMA) can be requested at any time by taking the asynchronous M em R eq input high.
For external memory cycles, the IMS T222 samples M em R eq during the first high phase of P ro cC lo ckO u t
after n o tM e m C E goes low. In the absence of an external memory cycle, M em R eq is sampled during every
rising edge of P ro c C lo c k O u t. M em AO-15, M em DO -15, notM em W rB 0-1 and n o tM em C E are tristated before
M e m G ra n te d is asserted.

Removal of M em R eq is sampled at each rising edge of P ro cC lo ckO u t and M em G ran ted removed with
the timing shown. Further external bus activity, either external cycles or reflection of internal cycles, will
commence during the next low phase of P ro cC lo ckO u t.

Chip enable, write enables, address bus and data bus are in a high impedance state during DMA. External
circuitry must ensure that n o tM em C E and notM em W rB 0-1 do not become active whilst control is being
transferred; it is recommended that a 10K resistor is connected from V C C to each pin. DMA cannot interrupt
an external memory cycle. DMA does not interfere with internal memory cycles in any way, although a program
running in internal memory would have to wait for the end of DMA before accessing external memory. DMA
cannot access internal memory.

M em R eq
M em G ran ted

R eset
Bootstrap
activity

B Bootstrap sequence

Figure 7.12 IMS T222 DMA sequence at reset

M e m R e q

External Memory
Interface activity

M e m G r a n te d

n o tM e m W r B 0 -1

n o tM e m C E

M e m A O -1 5

M e m D 0 - 1 5

-------------------- V

|TllT2lT3lT4 |T,lll.2lwllwiT3lT4|
EMI cycle EMI cycle with wait

^ v _

iInternal Memory Cycles

/ \ _____________________ /

> ------------------------ 0 < _ > ----------------------- O C

--------------------------- « « « « « »

Figure 7.13 IMS T222 operation of Mem Req and Mem Granted with external and internal memory cycles

DMA allows a bootstrap program to be loaded into external RAM ready for execution after reset. If M em R eq is
held high throughout reset, M em G ran ted will be asserted before the bootstrap sequence begins. M em R eq
must be high at least one period T D C L D C L of C lo ck ln before R eset. The circuit should be designed to
ensure correct operation if R eset could interrupt a normal DMA cycle.

Table 7.6 Memory request

S Y M B O L P A R A M E T E R
T222 -20 T 2 2 2 -1 7

U N ITS NO TEMIN M A X MIN M A X
TMRHMGH Memory request response time 75 a 100 a ns 1
TMRLMGL Memory request end response time 80 155 100 114 ns
TAZMGH Addr. bus tristate before MemGranted 0 0 ns
TAVMGL Addr. bus active after MemGranted end 0 0 ns
TDZMGH Data bus tristate before MemGranted 0 0 ns
TEZMGH Chip enable tristate before MemGranted 0 0 ns 2
TEVMGL Chip enable active after MemGranted end -6 0 ns
TWEZMGH Write enable tristate before MemGranted 0 0 ns 2
TWEVMGL Write enable active after MemGranted end -6 0 ns

Notes

1 Maximum response time a depends on whether an external memory cycle is in progress and whether byte
access is active. Maximum time is (2 processor cycles) + (number of wait state cycles) for word access; in byte
access mode this time is doubled.

2 When using DMA, notMemCE and notMemWrBO-1 should be pulled up with a resistor (typically 1.2k). Capac­
itance should be limited to a maximum of 50pF.

Figure 7.14 IMS T222 memory request timing

E ven tR eq and E ven tA ck provide an asynchronous handshake interface between an external event and an
internal process. When an external event takes E ven tR eq high the external event channel (additional to the
external link channels) is made ready to communicate with a process. When both the event channel and the
process are ready the processor takes E ven tA ck high and the process, if waiting, is scheduled. E ven tA ck
is removed after E ven tR eq goes low.

Only one process may use the event channel at any given time. If no process requires an event to occur
E ven tA ck will never be taken high. Although E ven tR eq triggers the channel on a transition from low to high,
it must not be removed before E ven tA ck is high. E ven tR eq should be low during R eset; if not it will be
ignored until it has gone low and returned high. E ven tA ck is taken low when R eset occurs.

If the process is a high priority one and no other high priority process is running, the latency is as described
on page 407. Setting a high priority task to wait for an event input allows the user to interrupt a transputer
program running at low priority. The time taken from asserting E ven tR eq to the execution of the microcode
interrupt handler in the CPU is four cycles. The following functions take place during the four cycles:

C yc le 1 Sample E ven tR eq at pad on the rising edge of P ro c C lo c k O u t and synchronise.

C yc le 2 Edge detect the synchronised E ven tR eq and form the interrupt request.

C yc le 3 Sample interrupt vector for microcode ROM in the CPU.

C yc le 4 Execute the interrupt routine for Event rather than the next instruction.

8 Events

Table 8.1 Event

S Y M B O L P A R A M E T E R MIN N O M M A X U N ITS N O TE
TVHKH Event request response 0 ns
TKHVL Event request hold 0 ns
TVLKL Delay before removal of event acknowledge 0 a+7ns 1
TKLVH Delay before re-assertion of event request 0 ns

Notes

1 a is 3 processor cycles TPCLPCL.

E ven tR eq

E ven tA ck

TVHKH

TKHVL
- TVLKL
TKLVH ,

Figure 8.1 IMS T222 event timing

9 Links

Four identical INMOS bi-directional serial links provide synchronized communication between processors
and with the outside world. Each link comprises an input channel and output channel. A link between two
transputers is implemented by connecting a link interface on one transputer to a link interface on the other
transputer. Every byte of data sent on a link is acknowledged on the input of the same link, thus each signal
line carries both data and control information.

The quiescent state of a link output is low. Each data byte is transmitted as a high start bit followed by a one
bit followed by eight data bits followed by a low stop bit. The least significant bit of data is transmitted first.
After transmitting a data byte the sender waits for the acknowledge, which consists of a high start bit followed
by a zero bit. The acknowledge signifies both that a process was able to receive the acknowledged data byte
and that the receiving link is able to receive another byte. The sending link reschedules the sending process
only after the acknowledge for the final byte of the message has been received.

The IMS T222 links allow an acknowledge packet to be sent before the data packet has been fully received.
This overlapped acknowledge technique is fully compatible with all other INMOS transputer links. The hard
output channels are not double buffered. There is thus a pause between transmission of the last byte of
a word of the message and the first byte of the next word. This pause time is related to memory speed.
Hard input channels have one byte of double buffering and are unlikely to affect the data rate. The dominant
factor affecting link bandwidth is therefore the memory bandwidth of the transmitting transputer, as shown in
table 9.1. Internal memory access time is similar to zero wait state external access time. Times are for two
interconnected IMS T222’s with 20 Mbits/sec link speed.

Table 9.1 Memory/Link speed relationship

M em o ry S p eed
(20M H z d ev ice)

Byte O u tp u t
T im e nS

W ord M em o ry
R ead nS

U n id irec tio a l
D ata R ate M b y tes /sec

1 cycle (0 wait) 575 200 1.48
2 cycle (1 wait) 575 250 1.42
3 cycle (2 wait) 575 300 1.38

The IMS T222 links support the standard INMOS communication speed of 10 Mbits/sec. In addition they can
be used at 5 or 20 Mbits/sec. Links are not synchronised with C lo ck ln or P ro cC lo ckO u t and are insensitive
to their phases. Thus links from independently clocked systems may communicate, providing only that the
clocks are nominally identical and within specification.

Links are TTL compatible and intended to be used in electrically quiet environments, between devices on a
single printed circuit board or between two boards via a backplane. Direct connection may be made between
devices separated by a distance of less than 300 millimetres. For longer distances a matched 100 ohm
transmission line should be used with series matching resistors RM. When this is done the line delay should
be less than 0.4 bit time to ensure that the reflection returns before the next data bit is sent.

Buffers may be used for very long transmissions. If so, their overall propagation delay should be stable within
the skew tolerance of the link, although the absolute value of the delay is immaterial.

Link speeds can be set by L in kS p ec ia l, L inkO Special and L in k 123S p ec ia l. The link 0 speed can be
set independently. Table 9.2 shows uni-directional and bi-directional data rates in Kbytes/sec for each link
speed; L in kn S p ec ia l is to be read as LinkO Special when selecting link 0 speed and as L in k123S p ec ia l for
the others. Data rates are quoted for a transputer using internal memory, and will be affected by a factor
depending on the number of external memory accesses and the length of the external memory cycle.

Table 9.2 Speed Settings for Transputer Links

Link
Special

Linkn
Special Mbits/sec

Kbytes/sec
Uni Bi

0 0 10 800 1130
0 1 5 430 590
1 0 10 800 1130
1 1 20 1480 2050

_ P ^ 0 1 2 3 4 5 6 7
Data

J h I l .
| Ack |

Figure 9.1 IMS T222 link data and acknowledge packets

Table 9.3 Link

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TJQr LinkOut rise time 20 ns 1
TJQf LinkOut fall time 10 ns 1
TJDr Linkln rise time 20 ns 1
TJDf Linkln fall time 20 ns 1
TJQJD Buffered edge delay 0 ns
TJBskew Variation in TJQJD 20 Mbits/s 3 ns 2

10 Mbits/s 10 ns 2
5 Mbits/s 30 ns 2

CLIZ Linkln capacitance @ f=1MHz 7 PF 1
CLL LinkOut load capacitance 50 PF
RM Series resistor for 100Q transmission line 56 ohms

Notes

1 These paramters are sampled, but are not 100% tested.

2 This is the variation in the total delay through buffers, transmission lines, differential receivers etc., caused by
such things as short term variation in supply voltages and differences in delays for rising and falling edges.

Figure 9.2 IMS T222 link timing

L in kO u t 1,5V - -

Latest TJQJD - ►
Earliest TJQJD ►

L in k ln 1.5V------------

TJBskew-*-

Figure 9.3 IMS T222 buffered link timing

Transputer family device A

L inkO ut L ink ln

L inkln L in kO u t
Transputer family device B

Figure 9.4 IMS T222 Links directly connected

Transputer family device A

L inkO ut

Link ln

RM

Zo=100ohms
........ v

Zo=100ohms RM

L inkln

L in kO u t
Transputer family device B

Figure 9.5 IMS T222 Links connected by transmission line

Transputer family device A

L inkO ut
— » ------------------- -— I L inkln

buffers
L inkln — -------------------- < — L in kO u t

Transputer family device B

Figure 9.6 IMS T222 Links connected by buffers

10.1

10 Electrical specifications
DC e lec trica l ch a ra c te ris tic s

Table 10.1 Absolute maximum ratings

SYMBOL PARAMETER MIN MAX UNITS NOTE
VCC DC supply voltage 0 7.0 V 1,2,3
VI, VO Voltage on input and output pins -0.5 VCC+0.5 V 1,2,3
II Input current ±25 mA 4
OSCT Output short circuit time (one pin) 1 s 2
TS Storage temperature -65 150 °C 2
TA Ambient temperature under bias -55 125 °C 2
PDmax Maximum allowable dissipation 2 W

Notes

1 All voltages are with respect to GND.

2 This is a stress rating only and functional operation of the device at these or any other conditions beyond those
indicated in the operating sections of this specification is not implied. Stresses greater than those listed may
cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods
may affect reliability.

3 This device contains circuitry to protect the inputs against damage caused by high static voltages or electrical
fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than the
absolute maximum rated voltages to this high impedance circuit. Unused inputs should be tied to an appropriate
logic level such as VCC or GND.

4 The input current applies to any input or output pin and applies when the voltage on the pin is between GND
and VCC.

Table 10.2 Operating conditions

SYMBOL PARAMETER MIN MAX UNITS NOTE
VCC DC supply voltage 4.75 5.25 V 1
VI, VO Input or output voltage 0 VCC V 1,2
CL Load capacitance on any pin 60 PF
TA Operating temperature range IMS T222-S 0 70 °C 3
TA Operating temperature range IMS T222-M -55 125 °C 3

Notes

1 All voltages are with respect to GND.

2 Excursions beyond the supplies are permitted but not recommended; see DC characteristics.

3 Air flow rate 400 linear ft/min transverse air flow.

Table 10.3 DC characteristics

SYMBOL PARAMETER MIN MAX UNITS NOTE
VIH High level input voltage 2.0 VCC+0.5 V 1,2
VIL Low level input voltage -0.5 0.8 V 1,2
II Input current @ GNDcVIcVCC ±10 H A 1,2
VOH Output high voltage @ IOH=2mA VCC-1 V 1,2
VOL Output low voltage @ IOL=4mA 0.4 V 1,2
IOS Output short circuit current @ GNDcVOcVCC 36 65 mA 1,2,3,6

65 100 mA 1,2,4,6
IOZ Tristate output current @ GNDcVOcVCC ±10 H A 1,2
PD Power dissipation 700 mW 2,5
CIN Input capacitance @ f=1MHz 7 PF 6
COZ Output capacitance @ f=1 MHz 10 PF 6

Notes

1 All voltages are with respect to GND.

2 Parameters for IMS T222-S measured at 4.75V<VCC<5.25V and 0°C<TA<70°C.
Input clock frequency = 5 MHz.

3 Current sourced from non-link outputs.

4 Current sourced from link outputs.

5 Power dissipation varies with output loading and program execution.

6 This parameter is sampled and not 100% tested.

10.2 E q u iva len t c ircu its

Load for: R1 R2 Equivalent load:

Link outputs
Other outputs

1K96
970R

47 K
24 K

1 Schottky TTL input
2 Schottky TTL inputs

Figure 10.1 Load circuit for AC measurements

In pu ts

In puts

O u tp u ts

O u tp u ts

Figure 10.2 AC measurements timing waveforms

Table 10.4 Input, output edges

SYMBOL PARAMETER MIN MAX UNITS NOTE
TDr Input rising edges 2 20 ns 1,2
TDf Input falling edges 2 20 ns 1,2
TQr Output rising edges 25 ns 1
TQf Output falling edges 15 ns 1

Notes

1 Non-link pins; see section on links.

2 All inputs except Clockln; see section on Clockln.

Notes
Figure 10.5 Typical rise/fail times

1 Skew is measured between notMemCE with a standard load (2 Schottky TTL inputs and 30pF) and
notMemCE with a load of 2 Schottky TTL inputs and varying capacitance.

Internal power dissipation PIN T of transputer and peripheral chips depends on VCC, as shown in figure 10.6.
Pin t is substantially independent of temperature.

Total power dissipation PD of the chip is

Pd = Pin t + Pi o

where PIO is the power dissipation in the input and output pins; this is application dependent.

Internal working temperature T j of the chip is

T j = Ta + QJa * Pd

where TA is the external ambient temperature in °C and 6 JA is the junction-to-ambient thermal resistance in
°C/W. 0 JA for each package is given in the Packaging Specifications section.

10.4 Power rating

Figure 10.6 IMS T222 internal power dissipation vs VCC

11 Performance

The performance of the transputer is measured in terms of the number of bytes required for the program, and
the number of (internal) processor cycles required to execute the program. The figures here relate to Occam
programs. For the same function, other languages should achieve approximately the same performance as
Occam.

11.1 P erfo rm a n c e o verv iew

These figures are averages obtained from detailed simulation, and should be used only as an initial guide;
they assume operands are of type INT. The abbreviations in table 11.1 are used to represent the quantities
indicated. In the replicator section of the table, figures in braces { } are not necessary if the number of
replications is a compile time constant. To estimate performance, add together the time for the variable
references and the time for the operation.

Table 11.1 Key to performance table

np number of component processes
ne number of processes earlier in queue
r 1 if IN T parameter or array parameter, 0 if not
ts number of table entries (table size)
w width of constant in nibbles
P number of places to shift
Eg expression used in a guard
Et timer expression used in a guard
Tb most significant bit set of multiplier ((-1) if the multiplier is 0)
Tbp most significant bit set in a positive multiplier when counting from zero ((-1) if the multiplier is 0)
Tbc most significant bit set in the two’s complement of a negative multiplier
nsp Number of scalar parameters in a procedure
nap Number of array parameters in a procedure

Table 11.2 Performance

S ize (by tes) T im e (cyc les)
N am es

variables
in expression 1.1+r 2 .1+ 2 (r)
assigned to or input to 1.1 + r 1.1+W
in PROC or FUNCTION call,

corresponding to an IN T parameter 1 .1+r 1 .1+ (r)
channels 1.1 2.1

A rray V ariab les (for single dimension arrays)
constant subscript 0 0
variable subscript 5.3 7.3
expression subscript 5.3 7.3

D ec la ra tio n s
CHAN OF p ro to co l 3.1 3.1
[s i z e] CHAN OF p ro to co l 9.4 2 .2 + 2 0 . 2 * s i z e

PROC body+2 0
P rim itives

assignment 0 0
input 4 26.5
output 1 26
STOP 2 25
SKIP 0 0

A rith m etic o p e ra to rs
+ 1 1
★ 2 23
/ 2 24
REM 2 22
» « 2 3+ p

M o d u lo A rith m e tic o p era to rs
PLUS 2 2
MINUS 1 1
TIMES (fast multiply) 1 4+ T b

B o o lean o p e ra to rs
OR 4 8
AND NOT 1 2

C o m p ariso n o p e ra to rs
* constant 0 1
= variable 2 3
<> constant 1 3
<> variable 3 5
> < 1 2
>= <= 2 4

Bit o p e ra to rs
/ \ V x ~ 2 2

E xp ress io n s
constant in expression w w
check if error 4 6

Table 11.3 Performance

Size (bytes) Time (cycles)
Timers

timer input 2 3
timer AFTER

if past time 2 4
with empty timer queue 2 31
non-empty timer queue 2 38+ne*9

ALT (timer)
with empty timer queue 6 52
non-empty timer queue 6 59+ne*9
timer alt guard 8+2Eg+2Et 34+2 Eg+2 Et

Constructs
SEQ 0 0
IF 1.3 1.4

if guard 3 4.3
ALT (non timer) 6 26

alt channel guard 10.2+2Eg 20+2Eg
skip alt guard 8+2Eg 10+2Eg

PAR 11.5+(np-1)*7.5 19.5+(np-1)*30.5
WHILE 4 12

Procedure or function call
3.5+(nsp-2)*1.1

+nap*2.3
16.5+(nsp-2)*1.1

+nap*2.3
Replicators

replicated SEQ 7.3{+5.1} (-3.8)+15.1 *count{+7.1}
replicated IF 12.3{+5.1} (-2.6)+19.4*count{+7.1}
replicated ALT 24.8{+10.2} 25.4+33.4*count{+14.2}
replicated timer a l t 24.8{+10.2} 62.4+33.4*count{+14.2}
replicated PAR 39.1{+5.1} (-6.4)+70.9*count{+7.1}

11.2 Fast multiply, times

The IMS T222 has a fast integer multiplication instruction product. The time taken for a fast multiply is 4+Tb.
The time taken for a multiplication by zero is 3 cycles. For example, if the multiplier is 1 the time taken is
4 cycles, if the multiplier is -1 (all bits set) the time taken is 19 cycles.

Implementations of high level languages on the transputer may take advantage of this instruction. For example,
the Occam modulo arithmetic operator t im e s is implemented by the instruction and the right-hand operand is
treated as the multiplier. The fast multiplication instruction is also used in high level language implementations
for the multiplication implicit in multi-dimensional array access.

11.3 Arithmetic

A set of functions are provided within the development system to support the efficient implementation of
multiple length integer arithmetic and floating point arithmetic where relevant. In table 11.4 n gives the number
of places shifted and all arguments and results are assumed to be local. Full details of these functions are
provided in the Occam reference manual, supplied as part of the development system and available as a
separate publication.

When calculating the execution time of the predefined maths functions, no time needs to be added for calling
overhead. These functions are compiled directly into special purpose instructions which are designed to
support the efficient implementation of multiple length integer arithmetic and floating point arithmetic.

Table 11.4 Arithmetic performance

Function Cycles
+ cycles for

parameter access f
LONGADD 2 7
LONGSUM 3 8
LONGSUB 2 7
LONGDIFF 3 8
LONGPROD 18 8
LONGDIV 20 8
SHIFTRIGHT (n<16) 4+n 8

(n>=16) n-11 8
SHIFTLEFT (n<16) 4+n 8

(n>=16) n-11 8
NORMALISE (n<16) n+6 7

(n>=16) n-9 7
(n=32) 4 7

ASHIFTRIGHT SHIFTRIGHT+2 5
ASHIFTLEFT SHIFTLEFT+4 5
ROTATERIGHT SHIFTRIGHT 7
ROTATELEFT SHIFTLEFT 7

t Assuming local variables.

11.4 Floating point operations

Floating point operations for the IMS T222 are provided by a run-time package. This requires approximately
2000 bytes of memory for the double length arithmetic operations, and 2500 bytes for the quadruple length
arithmetic operations. Table 11.5 summarizes the estimated performance of the package.

Table 11.5 IMS T222 floating point operations performance

Processor cycles
IMS T222

Typical Worst
REAL32 + - 530 705

* 650 705
/ 1000 1410
< > = > = < = < > 60 60

REAL64 + - 875 1190
* 1490 1950
/ 2355 3255

A V II X A II A V 60 60

11.5 Effect of external m em ory

Extra processor cycles may be needed when program and/or data are held in external memory, depending
both on the operation being performed, and on the speed of the external memory. After a processor cycle
which initiates a write to memory, the processor continues execution at full speed until at least the next
memory access.

Whilst a reasonable estimate may be made of the effect of external memory, the actual performance will
depend upon the exact nature of the given sequence of operations.

External memory is characterized by the number of extra processor cycles per external memory cycle, denoted
as e. The value of e for the IMS T222 with no wait states is 1.

If a program is stored in external memory, and e has the value 2 or 3, then no extra cycles need be estimated
for linear code sequences. For larger values of e, the number of extra cycles required for linear code
sequences may be estimated at (2e-1)/4 per byte of program. A transfer of control may be estimated as
requiring e+3 cycles.

These estimates may be refined for various constructs. In table 11.6 n denotes the number of components in
a construct. In the case of IF , the n’th conditional is the first to evaluate to TRUE, and the costs include the
costs of the conditionals tested. The number of bytes in an array assignment or communication is denoted
by b.

Table 11.6 External memory performance

IMS T222
Program off chip Data off chip

Boolean expressions e-1 0
IF 3en-1 en
Replicated IF 6en+9e-12 (5e-2)n+6
Replicated SEQ (4e-3)n+3e (4e-2)n+3-e
PAR 4en 3en
Replicated PAR (17e-12)n+9 16en
ALT (4e-1)n+9e-4 (4e-1)n+9e-3
Array assignment and

communication in
one transputer

0 max (2e, eb)

The following simulation results illustrate the effect of storing program and/or data in external memory. The
results are normalized to 1 for both program and data on chip. The first program (Sieve of Erastosthenes)
is an extreme case as it is dominated by small, data access intensive loops; it contains no concurrency,
communication, or even multiplication or division. The second program is the pipeline algorithm for Newton
Raphson square root computation.

Table 11.7 IMS T222 external memory performance

P rogram e=1 e=2 e= 3 e=4 On c h ip
P ro g ram o ff ch ip 1 1.2 1.4 1.8 2.1 1

2 1.1 1.2 1.4 1.6 1
D ata o ff ch ip 1 1.2 1.5 1.8 2.1 1

2 1.1 1.3 1.4 1.6 1
P ro g ram an d d a ta o ff ch ip 1 1.4 1.9 2 .5 3.0 1

2 1.2 1.5 1.8 2.1 1

11.6 In te rru p t la ten cy

If the process is a high priority one and no other high priority process is running, the latency is as described
in table 11.8. The timings given are in full processor cycles T P C L P C L ; the number of Tm states is also given
where relevant. Maximum latency assumes all memory accesses are internal ones.

Table 11.8 Interrupt latency

T yp ica l M axim u m
T P C L P C L Tm T P C L P C L Tm

IM S T 222 19 53

12 Package specifications
12.1 68 pin grid array package

1 2 3 4 5 6 7 8 9 10

Figure 12.1 IMS T222 68 pin grid array package pinout

f TI Er
J L

F

« = :

10 9 8 7 6 5 4 3 2 1

® © © © © © © © ©
.... \
© A

© © © © © © © © © © B
© © © © © © C
© © © © D
® © © © E
© © © © F
© © © © G
© © © © © © H
© © © © © © © © © © J
© © © © © © © © © © K

L U

Figure 12.2 68 pin grid array package dimensions

Table 12.1 68 pin grid array package dimensions

D IM
M illim e tres Inches

N otesN O M T O L N O M T O L
A 26.924 ±0.254 1.060 ±0.010
B 17.019 ±0.127 0.670 ±0.008
C 2.466 ±0.279 0.097 ±0.011
D 4.572 ±0.127 0.180 ±0.005
E 3.302 ±0.127 0.130 ±0.005
F 0.457 ±0.051 0.018 ±0.002 Pin diameter
G 1.270 ±0.127 0.050 ±0.005 Flange diameter
K 22.860 ±0.127 0.900 ±0.005
L 2.540 ±0.127 0.100 ±0.005
M 0.508 0.020 Chamfer

Package weight is approximately 6.8 grams

Table 12.2 68 pin grid array package junction to ambient thermal resistance

S Y M B O L P A R A M E T E R MIN N O M M A X U N ITS N O TE
0JA At 400 linear ft/min transverse air flow 35 °C/W

12.2 68 pin PLCC J-bend package

“ 0 3
- . 2 <d o.2 O CL.*
O O CO o : 0) CL CO o

E 0 . (0 CM —^ W O r O

O C O N t f J W ' t f P J C M O O N C D I O t J - C O C V J t -
CO CO CO CO CO CO CO CO

jinn.nnn a nnnnnimmm.
H o id T o G N D 10 C

B o o t F r o m R O M 11 C
R e s e t 12 c

E r r o r 13 c
H o id T o G N D 14 c

M e m D O 15 c
M e m D 1 16 c
M e m D 2 17 c
M e m D 3 18 c
M e m D 4 19 c
M e m D 5 20 c

G N D 21 c
M e m 6 22 c
M e m 7 23 c
M e m 8 24 c

M e m D 9 25 c
M e m 1 0 26 c

IM S T 2 2 2
6 8 p in J -B e n d

C h ip C a rr ie r
T o p V ie w

=160
□ 59
□ 58
□ 57
□ 56
□ 55
□ 54
□ 53
□ 52
□ 51
□ 50
□ 49
□ 48
□ 47
□ 46
□ 45
□ 44

.onm □o'u u i j u uuuuuuuu
S O O O l O T - C M C O ^ t i n c D N e O O O T - C M C O
C M C M C M C O C O C O C O C O C O C O C O C O C O X j - x r T J t - T t

r , r , r , T“ r * r , r , #»,r r , T " r , r f < [r f r f r f
Q Q Q Q Q < < r < < < < c c c c c
E E E E E E E ^ E E E E S S S S S
o A) <d a) a) a> a> o o o o s s s s s s
S S S S S S S S S S 2

D is a b le ln tR a m
E v e n tA c k
H o id T o G N D
A n a ly s e
M e m B A c c
M e m W a it
M e m R e q
M e m G r a n te d
G N D
n o t M e m C E
n o tM e m W rB O
n o t M e m W r B I
M e m A O
M e m A 1
M e m A 2
M e m A 3
M e m A 4

Figure 12.3 IMS T222 68 pin PLCC J-bend package pinout

Figure 12.4 68 pin PLCC J-bend package dimensions

Table 12.3 68 pin PLCC J-bend package dimensions

DIM
Millimetres Inches

NotesNOM TOL NOM TOL
A 25.146 ±0.127 0.990 ±0.005
B 24.232 ±0.127 0.954 ±0.005
C 3.810 ±0.127 0.150 ±0.005
D 0.508 ±0.127 0.020 ±0.005
F 1.270 ±0.127 0.050 ±0.005
G 0.457 ±0.127 0.018 ±0.005
J 0.000 ±0.051 0.000 ±0.002
K 0.457 ±0.127 0.018 ±0.005
L 0.762 ±0.127 0.030 ±0.005

Package weight is approximately 5.0 grams

Table 12.4 68 pin PLCC J-bend package junction to ambient thermal resistance

SYMBOL r PARAMETER MIN NOM MAX UNITS NOTE
0JA At 400 linear ft/min transverse air flow 35 ° c /w

13 Ordering
This section indicates the designation of speed and package selections for the various devices. Speed of
C lo ck ln is 5 MHz for all parts. Transputer processor cycle time is nominal; it can be calculated more exactly
using the phase lock loop factor P LLx, as detailed in the external memory section.

For availability contact local INMOS sales office or authorised distributor.

Table 13.1 IMS 1222 ordering details

IN M O S
d e s ig n a tio n

P ro c e s s o r
c lo c k sp eed

P ro cesso r
c yc le tim e P LLx P ackage

IM S T 222 -G 17S 17.5 MHz 57 ns 3.5 Ceramic Pin Grid
IM S T 222 -G 20S 20.0 MHz 50 ns 4.0 Ceramic Pin Grid

IM S T 2 2 2 -J17S 17.5 MHz 57 ns 3.5 Plastic J-Bend
IM S T 2 2 2 -J 2 0 S 20.0 MHz 50 ns 4.0 Plastic J-Bend

IM S T 2 2 2 -G 1 7 M 17.5 MHz 57 ns 3.5 Ceramic Pin Grid MIL Spec
IM S T 2 2 2 -G 2 0 M 20.0 MHz 50 ns 4.0 Ceramic Pin Grid MIL Spec

