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10.1 Introduction

The correlation process is widely used in many electronic systems including instrumentation, communication, 
medical ultrasonics, radar, sonar, control systems and other signal processing environments. The basic 
reasons for this widespread use can be attributed to the many useful characteristics exhibited by the correlation 
process. These properties include

•  The ability to recover a desired signal masked by noise or other interferences. This is particularly 
useful in noisy environments that arise in communication, radar, sonar and ultrasonic applications.

•  Delay estimation capability which is essential in many applications including range measurement in 
navigation systems, radar, sonar and also system identification.

• The ability to recognize a given pattern within a signal.

•  The auto-correlation of a signal is closely related to the power spectrum which has resulted in the 
application of the correlation process to spectral analysis.

•  The correlation process provides a good characterization of many signals and has therefore been 
used in many prediction and estimation algorithms.

Convolution is closely related to the correlation process. Mathematically convolution is what happens in the 
process of filtering. It will be shown in the next section that both these functions involve a large number 
of multiplications and additions. Up to now, for the time domain implementation of these processes, many 
systems have used multiply-accumulator devices. Because of their inherent concurrency, the numerical 
evaluations involved in the convolution and correlation functions can be performed in parallel. But due to 
the high cost, power consumption requirement, and size restriction many digital systems use only a single 
(or possibly two) multiply-accumulator(s). This has resulted in a processing bottle-neck in the time domain 
evaluation of these functions. For example using a 16-bit multiply and accumulator chip available today it is 
possible, for a 32-point digital correlator, to achieve at best a sampling frequency of around 100 to 300KHz. 
This is further reduced as the number of correlation points increases. Additional complexities occur as some 
form of address generator has to be used to sequence the data and the reference coefficients through the 
multiply-accumulator chip.

The IMS A100 VLSI chip overcomes these problems by incorporating 32 multiply-accumulators on a single 
chip. The sampling speed of the IMS A100 ranges from 2.5 MHz to 10 MHz depending on the reference- 
waveform word-size. (4, 8 ,12 or 16 bits). It is the true parallelism incorporated in the systolic structure of the 
IMS A100 that allows such speed increases. The architecture of the IMS A100 has been designed in such a 
way that large numbers of these chips can be cascaded to perform high precision correlations involving more 
than 32 points at full speed. Alternatively it is possible to use multidimensional index mapping to decompose 
a long correlation/convolution into a number of short ones which can then be carried out by usoing a single 
or a small number of devices.

By suitable allocation of the coefficients, the IMS A100 can be used to perform 3x3, 5x5, or larger two- 
dimensional image convolutions.

In this application note the concepts of correlation and convolution are first introduced followed by their 
IMS A100 implementation issues. Partitioning techniques for decomposing a long correlation/convolution into 
a number of short ones are then described. Next an example of a two-dimensional image convolution is 
given. Finally some application areas of correlation and convolution are summarised.

10.2 Correlation concepts

The correlation between two functions is a measure of their similarity. This is illustrated in figure 10.1 where 
three extreme cases are depicted. Figure 10.1 a shows two waveforms which are absolutely identical and they 
have maximum positive correlation. The two waveforms in figure 10.1b are similar, except for their polarities 
and as such they have maximum negative correlation. Finally figure 10.1c shows one of the waveforms of 
figure 10.1 a and a noise like signal. As these two waveforms are completely dissimilar the correlation between 
them is expected to be very small or even zero.
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Figure 10.1 Illustration of correlation process

Mathematically the correlation function between two waveforms z(t) and y{t) is expressed as

^ y W = Tl̂ 00 (1)

Rxy(r) is also referred to as cross-correlation between the two waveforms. For identical waveforms (ie corre
lating a waveform x(t) with itself) the correlation function is denoted by Rxx(t) and is called the auto-correlation 
function.

Equation (1) can be interpreted as follows:

The cross-correlation function, Rxy(r) between the two waveforms x(t) and y(t) is obtained by shifting one 
of the two signals in time by an amount equal to r (i.e. modifying y{t) to y(t + r)), multiplying the shifted 
waveforms by the other signal and integrating the product.
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If the waveforms ate periodic with a period To, equation (1) can be modified to:
+Tp

RxvM  -  j r  J_  x(*)y(t + T)dt

i.e. the integration is evaluated only over one period of the signal.

Figure 10.2 provides a graphical illustration of the process of cross correlation between two waveforms x(t) 
(figure 10.2a) and yti) figure 10.2b. We start by multiplying the two waveforms and integrating over the 
interval ^  < t < 4 *  yielding i k y(0). With r = 0, (ie no shift) it can be seen from figures 10.3a & 10.3b 
that there is no overlap between non-zero parts of the two waveforms resulting in Rxy(0) -  0 as shown in 
figure I0.2f. To evaluate Rxy(r), the waveform y(t) is left shifted by an amount equal to r, giving y(t + r), 
and the multiplication and integration is repeated. As the waveform y(t) is shifted to the left, there will be no 
overlap between non-zero parts of y(t + r) and x(t) untill r > n , see figure 10.2c. At r = n , the non-zero 
parts of the two waveforms just begin to overlap. Figure 10.2d shows the position of y(t) when it is shifted by 
r = r2. Here the non-zero parts of z(*) and y(t + r2) have have overlapped and the integration of the product 
of the two waveforms therefore yields a non-zero value for Rxy(r2) as shown in Figure 10.2f. As y(t) is shifted 
further the non-zero overlapping section of the two waveforms and hence the value of Rxy(r) increase. When 
y(t) is shifted to the position shown in figure 10.2e, full overlap occurs and Rxy(r) will attain its maximum 
value of Rxy(T3) as shown in figure 10.2f. Shifting y(t) further causes the value of i k y(r) to decrease as the 
two waveforms pass each other. Figure 10.2f shows the complete cross-correlation function between the two 
waveforms. You can confirm the shape of this cross-correlation function by evaluating equation (2a).

Figure 10.2 Graphical illustration of the correlation process

One interesting point to note here is that the maximum value of Rxj/(t) occurs at t = r3 which is equal to 
the time-lag, TL, between the two waveforms x(t) and y{t). This is how the correlation process is used to 
measure delays.



From figure 10.2 it can be seen that the cross correlation function could have been evaluated by shifting 
x(t) to the right instead of left shifting y(t). Mathematically this can be confirmed by defining a new variable 
t# = t + r and substituting in (2a) which gives:

+Tq

R x y (r) = j r  J_  *(*' -  r)y(t)dt (26)

So far we have dealt with the correlation of analogue signals. For digital processing both waveforms x(t) and 
y(t) have to be sampled and digitalized. For discrete-time signals the process of correlation can be expressed 
as:

1
Rxy(mT) -  -  £  x(kTM k + m)T) (3a)

fc-0
At time * *  fcT equation (3a) requires future samples of y(t). Similar to the analogue case, (equation 2b), the 
above equation can be modified so that it only uses past samples of y(t), i.e.

4 * - 1
R x y im T ) = -  ]T  * ( ( *  -  m)T)y(kT)

^  km0
(3b)

In equation (3b), T, donates the sampling period and should be chosen to ensure that the sampling rate is 
greater than twice the signals bandwidth (Nyquist rate). For the sake of simplicity the factor, T, is usually 
dropped from the indices of equations (3a) & (3b), i.e.

1
Rxy(m) = JZ ^ 2  x (k)y(k + m) (4fl)

fc-0

Rxy(m) = JZ x (k -  m)y(k) (4fe)
1 km0

Where k and m are used to index the samples and N  is the number of correlation points involved. In practice 
the correlation size N  will depend on the duration of the two functions, and on their periodicity if they are 
periodic.

From equations (4a) or (4b) it can be observed that direct evaluation of M samples of the cross-correlation 
function, Rxy, will involve M  x N  multiply-and-accumulate operations.

10.3 Convolution concepts

The convolution function is closely related to that of correlation. The convolution of two signals x(t) and y(t) 
is mathematically defined by:

C»y(r) = ^lim^ ^  x{t)y(T -  t)dt (5)

This equation is very much similar to equation (1) defining the correlation process. Their difference is that 
in convolution the signal y(t) is first time-reversed (i.e. is mirrored around t = 0) and then shifted by r. This 
time-reversed and shifted signal is then multiplied by x(t) and the product is integrated over all t's. Figure 10.3 
graphically illustrates the process of convolution.

The process of convolution occurs in filters where the output of a filter is in fact the convolution of the input 
function, d(t), and the impulse response, h(t), of the filter (see the application note entitled ‘Digital Filtering 
with the IMS A100’):'  /»+oo

/(r) = / d(t)h(r — t)dt (6)
J  — oo

where f(r) is the filter output.

For discrete-time signals equation (5) becomes

1 " -1
c xy (m ) = — Y h  x (k)y(m -  k) 

k=0
(7)



which defines the convolution function for digital signals. Notice that like correlation, convolution involves 
carrying out N  multiply-and-accumulations for each sample of Cxy(m). Due to the high degree of similarity 
between correlation and convolution functions, the same hardware can be used to perform both functions. 
All that needs to be done is to time-reverse one of the waveforms for the convolution process.

The following two sections deal with hardware implementations for the correlation and convolution functions. 
The first section deals with the conventional approach involving multiply-and-accumulator chips and points out 
the processing bottle-necks associated with these solutions. The second section shows how the IMS A100 
signal processor can be configured to perform these functions efficiently and simply, at speeds not economi
cally feasible with the conventional approach.

10.4 Conventional hardware for time-domain evaluation of correlation

As discussed earlier, the processes of correlation and convolution are based on multiplying a delayed version 
of a sequence of samples by another sequence and summing the products. Conceptually this could be 
mechanised, as shown in figure 10.4, by providing two shift registers to hold all the values of x ’s and y s 
required for the computation, a further shift register to provide the delay (mT), an array of multipliers for 
forming the products, and a multi-input adder for the final summation. In the example of figure 10.4 the 
output would correspond to Rxy(2), as a delay of two stages is incorporated in the path of signal x(kT) giving 
x((k -  2)T) (see equation 3b).

Up to now, due to the large number of multipliers and adders involved, it has not been possible to eco-



Figure 10.4 Schematic diagram for an ideal correlator hardware

nomically implement high precision correlators directly in the form given by figure 10.4. Instead to minimize 
the size, cost and power consumption, a single multiply-and-accumulator is usually used and time-shared 
between all the multiplications. Figure 10.5 shows a schematic block diagram of a conventional correlator 
implementation. The system consists of memories to hold samples of the two signals to be correlated, a 
multiply-accumulator and an address generator hardware which is responsible for sequencing the correct 
order of signal samples through the multiply-and-accumulator. The obvious disadvantage of this arrangement 
is the processing bottle-neck caused by using a single multiply-and-accumulator to sequentially evaluate what 
is inherently a concurrent problem. Assuming a multiply-accumulate time of Tmaci for an N-point correlator 
implemented using a single multiply-accumulator, the maximum sampling rate would be

fmax, ~ irpp (8)

For example if Tmac = 100ns and N  -  100, then a signal sampling frequency of at most 100kHz would be 
possible.

Many applications such as radar and communication require faster processing rates than can be achieved 
using a single multiply-and-accumulator. (Some improvements can be achieved by carrying out the processing 
in the frequency domain at the cost of introducing some complexity. However here we are only concerned 
with the time-domain approach. A separate application note entitled ‘Discrete Fourier Transform with the 
IMS A100’ deals with the time-domain to frequency-domain transformations)

In applications where a fast processing rate is essential, a trade-off is often made between the correlator 
precision and its speed. For example if one or both of the signals x and y are assumed binary, the multi
plications become simple binary AND operations, and it would be possible to implement a high speed low 
precision correlator. In fact many correlator chips available today are of this type and have very low precision 
compared to those implemented from multiply-accumulators.

The IMS A100 chip on the other hand is the first high-precision high-speed VLSI implementation of a single
chip correlator. It provides a numerical accuracy in excess of that of the 16-bit multiply and accumulators 
while allowing sampling rates in the MHz region. The next section illustrates how this chip can be used to 
perform fast and highly accurate correlation and convolution functions.

10.5 The IMS A100 implementation of correlation/convolution

The IMS A100 is a 32-stage correlator (convolver) in which the samples of the two signals to be correlated 
can be represented as up to 16-bit words. This corresponds to a signal dynamic range of 96 dB’s. A number
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Figure 10.5 Block diagram of a conventional correlator/convolver

of these devices can also be cascaded, without the need for any external components, to provide much 
longer correlators while preserving a high degree of accuracy. The IMS A100 chip (or cascaded chips) can 
be fully memory mapped and used as a peripheral accelerator to a host processor.

To understand the architecture of the IMS A100 let us first consider the basic function of a simple 3-point 
correlator shown in figure 10.6a. The three samples of the first signal (reference signal) i.e. x0f x, and x2 
are loaded in three registers feeding an array of three multipliers. The samples of the second signal i.e. 
yo, y i, t/2 , .... are fed into a 3-stage shift register whose outputs are also connected to the multipliers. A three 
input adder combines the products to give the correlation function. As the samples of the signal y are shifted 
through the shift register, the output of this hypothetical correlator (assuming the shift register is reset at the 
start) will be:

yox2i yo^+y^x2i yo*o + y w  + y2x2i y^xo + y2x̂  +y3x2i......
The correlator structure in figure 10.6a can be modified to that given in figure 10.6b without affecting the 
functionality. In figure 10.6b the multi-input summation process is avoided and replaced by a chain of delay- 
and-add units. The input, supplying the signal y, is also made common to all of the multipliers. Note also that 
the signal samples xoi x^ix2 are stored in the opposite direction to that of figure 10.6a. Supplying the input
sequence of samples yo,yi,y2,y3, ..... to the structure of figure 10.6b and simultaneously shifting the partial
products along the delay-and-add chain, it is straightforward to confirm that the output sequence would be

yox2, yo^i + y<\x2y yo^o + y ‘\x i  +  j/2^2, yi^o +  y2^i +  y3x2, ........

This sequence is absolutely identical to that obtained from figure 10.6a. In other words the structure in fig
ure 10.6a & b have identical functionality and both can be used to perform correlation between two sequences. 
The IMS A100 architecture is based around this modified structure. The major processing part of the chip 
incorporates 32 multipliers and a 32-stage delay-and-add chain as shown in figure 10.7.

At this point the interested reader is advised to consult the data sheet of the IMS A100 for full details.



output

(a) conventional correlator structure

• .  .i/3,y2,yi,!/o

(b) modified correlator architecture (IMS A100)

Figure 10.6 Relating the IMS A100 architecture to that of a correlator

Figure 10.7 User’s model of the IMS A100



In order to correlate two sequences x(k) and y(n), the samples of one of the two signals, say x(k)'sf should 
be stored in one set of the IMS A100’s coefficient registers. These samples should be loaded from left to 
right with the last sample of x(k) stored in the coefficient register associated with the last multiplier. If the 
reference waveforms x(k) is less than 32-samples long, any unused left-most coefficient registers should be 
set to zero. For a 30-sample reference signal, this allocation is depicted in figure 10.8.

0 0 *(0) *(1) *(2) *(27) *(26) *(28) x{29)

t
coefficient register 
associated with 
the first stage

t
coefficient register 

associated with 
the last stage

Figure 10.8 Example of the reference signal allocation for a 30 point correlator

The samples of the other signal y(n) are then applied to the input of the IMS A100. As shown earlier the 
output sequence would correspond to the cross-correlation function of the two signals. If the two signals 
x(k) and y(n) are to be convolved rather than correlated, the reference signal s(Jfc) should be loaded in the 
coefficient registers in the opposite direction. The register allocation for a 30-point convolver is shown in 
figure 10.9. As discussed in the data sheet, the IMS A100 processor has two sets of coefficient registers. 
At any instant in time one set of coefficients is applied to the multiplier array, whilst the other set can be 
accessed via the IMS A100 memory interface. For correlations (convolutions) dealing with real signals, one 
set of these coefficients would be sufficient. The second set can be used to hold a different reference signal 
and if necessary the function of the two memory banks can be interchanged by performing a write operation 
to the ‘Bank swap’ bit of a control register. Such an operation would initiate the correlation (convolution) of 
the input signal with the second reference waveform. The existance of the two coefficient register sets and 
the continuous bank-swap mode allows the IMS A100 to perform complex (correlation)convolution, where 
both the reference and the input signal have real and imaginary components. This configuration is discussed 
in the application note ‘Complex Processing with the IMS A100\
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Figure 10.9 Coefficient register allocation for a 30 point convolution

For the IMS A100 the data-word length is 16 bits whilst the coefficient-word length can be programmed to 
be 4, 8,12 or 16 bits. The maximum data throughput (the sampling rate) is a function of the coefficient size. 
Table 10.1 relates the coefficient size to the maximum sampling rate and indicates the effective number of 
multiply-and-accumulate operations per second in each case. The last column shows the effective number 
of multiply-and-accumulates when four devices are cascaded.

The strength of the IMS A100 can be appreciated by comparing the effective number of multiply-and- 
accumulations/sec with that of multiply-accumulator IC’s which range from 5-10 million/sec.

As discussed in the A100 data sheet, in order to preserve complete numerical accuracy no truncation or 
rounding is carried out on the partial products in the multiply-and-accumulation array. The output is thus 
calculated to 36 bit precision which ensures no overflows. A barrel-shifter at the output of the multiply-and- 
accumulate array allows 24 bits from these 36 bits to be selected (sign-extended if necessary) and rounded 
for output. This selection can be programmed via a control register. The programming details can be found 
in the IMS A100 data sheet.



Coefficient 
word size

(bits)

Sampling
rate

(MHz)

Effective number of multiply-and-accumulates 
(Millions/second)

Single A100 Four A100s
4 10 320 1280
8 5 160 640

12 3.3 106 424
16 2.5 80 320

Table 10.1

The architecture of the IMS A100 has been designed to allow large numbers of these devices to be cascaded 
for correlations (convolutions) involving more than 32-stages, the devices can be cascaded while preserving 
a high degree of accuracy and without the need for any external components. This is made possible by 
incorporating on chip a 32 stage, 24-bit wide, shift register and a 24-bit adder which combines the output of 
the barrel-shifter with that of the 32-stage shift register (see figure 10.7).

The IMS A100 chips can be cascaded by simply connecting the output of the each device to the cascade input 
of the following device. The input is common to all cascaded devices. The effect of such an arrangement 
is that the output of the first device is delayed by 32 cycles, before being added to that of the next device. 
Figure 10.10 illustrates how, for example, a 64-point correlator can be implemented using two IMS A100 
devices. The allocation of the reference signal samples is also indicated in this illustration. In this arrangement 
the barrel-shifter in each device acts as a data scalar (with rounding). The cascading process can be 
considered as a block-floating point operation where the common exponent is determined by the extent of 
the shift carried out by the barrel-shifter. With this cascading technique a very high degree of accuracy is 
preserved because the output scaling is only performed after every 32-multiply and accumulation stages and 
not at any intermediate stage.

For convolution purposes the reference signal should be loaded into the coefficient stage in the opposite 
direction to that shown in figure 10.10.

Figure 10.10 Cascading two IMS A100 devices to obtain a 64 point correlator

A very important feature of the IMS A100 transversal filter is that the part is fully memory mappable. Apart 
from the two coefficient memory banks, which can be accessed via the IMS A100 standard memory interface, 
the input and output of the device are also accessible from the same interface. This feature allows the part



to be used either with its input and output data communicated through the dedicated ports or through the 
memory interface. The latter options allows the device to be easily interfaced to a host processor and used 
as a high speed peripheral. The status and control registers of the IMS A100, accessible via the memory 
interface, provide full control of the part by the host processor.The memory interface can also be used as 
a facility for system diagnostics, as the host processor can act as a watch-dog in systems involving arrays 
of IMS A100‘s. Full specification of the IMS A100, its status and control registers and its standard memory 
interface are detailed in the data sheet available from INMOS.

10.6 Decomposition of long correlations and convolutions

A single IMS A100 device is effectively a 32-tap correlator (convolver) in which the samples of the two 
signals to be correlated can be expressed in upto 16-bit words. As described earlier, one method to deal 
with correlations/convolutions involving more than 32 points is to use several cascaded devices to achieve a 
longer correlator/convolver. For such an arrangement, and with 16-bit coefficients, tha data rate can be as 
high as 2.5 Million samples/sec.

Alternatively it is possible to use various decomposition techniques to partition a long correlation/convolution 
into a number of shorter ones, which can then be carried out by a single or a small number of IMS A100 
devices. The host machine would merely combine the results from these short correlations/convolutions to 
obtain the overall result. The advantage of this approach, compared to using single MAC based processors, is 
a significant reduction in the required memory bandwidth. This is why even a medium-speed general purpose 
microprocessor can achieve a very high performance when combined with the IMS A100.

A simple way to decompose a long correlation/convolution of length N, between waveforms x and y, is to 
break up one of the waveforms, say x, into consecutive blocks of 32 sample. Each one of these blocks 
can then be correlated/convolved with the whole of the waveform y by loading each block into the IMS A100 
coefficient registers, and using y as the input sequence. The output from these correlations/convolutions 
can then be combined by displacing each partial result by 32 samples, with respect to the previous one, 
and performing an addition operation. Note that the coefficient registers, containing blocks of waveform x, 
need only be updated once every time the whole of the waveform y is fed through the device, resulting in 
a significant saving in the memory bandwidth. The block size of 32, suggested above, whould mean that 
a single IMS A100 would be sufficient. However processing speed can be improved by using cascading 
devices to perform these partial correlations/convolutions. With suitable memory mappings, hosts such as 
INMOS transputers can use their on-chip DMA engine to feed the IMS A100 devices with the samples of the 
waveform y.

A more complicated decomposition technique, to be described here, is based on the multidimensional index 
mappings (references 1 & 2). These techniques are applicable to cyclic convolutions/correlations. However 
all convolutions/correlations can be made cyclic by adding zero terms to the end of the data blocks. As an 
example, consider the following cyclic correlation:

N - 1
C(k) -  ^  x(k + n)y(n) (9)

n=0

where the indices are evaluated modulo N. The arrays C, x, and y can be mapped into multidimensional 
arrays C ',x \  and y', the requirement being that the mapping should be one-to-one and cyclic in at least one 
dimension. The map, in general, can assume many different forms, but the one particularly useful is the 
linear form. For a simple two-dimensional decomposition such a map would be of the form:

n = (M in i + M2n2) mod N. (10)

Note that n is evaluated modulo N, making the map cyclic in n. In order for this map to be unique and one- 
to-one, the mapping constants M\ and M2 must satisfy certain conditions. These conditions are summarised 
in section 6 of the IMS A100 Application Note 2 which is available from INMOS and will not be repeated here.



As an example let us map the arrays in equation (9) into two-dimensional matrices of dimensions JVi and N2 
where N  = x N2, we can use the mapping given by equations (10) for n and k giving

N \ - 1 n 2-  1
<7(Mifci + M2k2) = x(MiA;i + M2k2 + Mini + M2n.2)y(Mini + M2n2) (11)

ni =0 r»2

+ n i, A?2 + n2)y '(m , n2) (12)
»»1 112

This is now a true two-dimensional convolution which can be made cyclic along m if M i is made a multiple of 
N2t and/or cyclic along n2 if M2 is made a multiple of N^. With these conditions, inspection of equation (12) 
shows that the long N-point circular correlation can be performed by Nf, N2-point correlations or jv f , JVi -point 
correlations. This involves correlating each row (or column) of the matrix y' with all the rows (or columns) 
of the matrix x'. These short circular correlations can be efficiently performed by the IMS A100, with the 
host merely adding partial results. The approach is particularly efficient as it is possible to load one row ( or 
column) of the matrix y' into the coefficient memory of the device and to feed all the rows (or columns) of 
the matrix successively to the input of the device to obtain partial results, for the elements in the matrix 
C*. The fact that with this algorithm, the coefficient memories need only be updated occasionally (once 
every time all the elements of the matrix x' are fed into the device) results in an impressive reduction in the 
memory bandwidth requirement. This is why, even with a general purpose microprocessor, as the host, very 
impressive perfomance can be achieved.

In the example given here, we concentrated around a two-dimensional mapping. It is important to realise 
that the same decomposition concepts can be extended to more dimensions. The easiest way to see this 
is to start with a two dimensional decomposition and then partition the rows of the two-dimensional matrices 
further. For example if

N  = ATi x N2 x AT3

the original AT-point correlation can be carried out via iV f, ^  x JV2-point correlations. However, each one 
of the JVi x JV2-point correlations can further be decomposed, as before into N ft W2-point correlations.



10.7 2-D image convolutions with the IMS A100

Many applications including image processing require 2-D convolutions and correlations. Such operations 
are needed in image filtering, edge detection, etc. There are many ways that the IMS A100 can be used 
to speed up these operations. This section gives an example of how the device can be used to perform 
3 x 3 ,  5 x 5 ,  or larger convolutions.

Figure 10.11a shows a 20 x 20-pixel image which is to be convolved with the 3 x 3 reference matrix given 
by figure 10.11b. One way to achieve this is to load the reference matrix, as shown in figure 10.11c, in one 
of the IMS A100 coefficient register banks, and sequence the image data through the device as shown by 
the arrowed path in figure 10.11a. In this way every third output sample of the IMS A100 would correspond 
to a valid filtered pixel for the second row of the image. To proceed, the same sequence, moved down by 
one row, is then passed through the device which provides the filtered results for the nest row and so on. A 
single IMS A100 can deal with reference matrices as big as 5 x 5.

a d g

b e h

c f i

(b) 3x3 convolution matrix

(a) 20x20 pixel image, arrows show the required data sequencing

(c) Coefficient register allocation for the 3x3  convolution

Figure 10.11 Example of a 3x3 image convolution/correlation with the IMS A100



An alternative arrangement which gives a better throughput is one where, as shown in figure 10.12a, 7 
zeroes are inserted in the IMS A100 coefficient registers (between terms corresponding to the columns of the 
reference matrix). The data sequencing would be as shown in figure 10.12c, where ten pixels from a given 
column are fed through the device before moving to the next column. In this scheme the first nine rows of the 
image are filtered in one scan, with 80% of the output data samples being valid. (Note that, using a single 
device, the number of inserted zeroes can be increased from 7 to 11, allowing 13 image rows to be filtered 
in each scan.)

The examples given here are just a small subset of possible arrangements. Remembering that the IMS A100 
devices can be cascaded or used in parallel, numerous other implementations for image processing become 
possible.

a d g

b e h

c f i

(b) 3x3 convolution matrix

(a) 20x20 pixel image, arrows show the required data sequencing

9 zeroes 7 zeroes 7 zeroes

(c) Coefficient register allocation for the 3x3  convolution

Figure 10.12 Improved version of the 3x3 image convolution/correlation with the IMS A100



10.8 Some application examples of correlation and convolution

Correlation and convolution are encountered in numerous applications of digital signal processing, this section 
summarises some of the application areas where these techniques are used.

10.8.1 Delay and periodicity estimation

The correlation process can be used to estimate the time delay between two similar signals. Figure 10.13 
shows two signals x(t) and y(t) which are identical in shape but have a time delay between them. If these 
two signals are correlated the cross-correlation function would attain a maximum when y(t) is delayed by an 
amount equal to the delay between the two waveforms. This is illustrated in figure 10.13c where the peak 
of the cross-correlation function occurs at t = Td where Td is the delay between the two waveforms. This 
technique has applications in areas such as radar, sonar and medical ultrasonics where a measurement of 
the time delay between the transmitted signal and the return echo from an object gives an indication of the 
range of that object.

Figure 10.13 Delay estimation using correlation process

The same technique can also be used to measure the period of a repetitive signal. This can be achieved 
by correlating the signal with itself i.e. by calculating its auto-correlation function as illustrated in figure 10.14 
the auto-correlation of a periodic signal exhibits peaks, spaced a distance, To, apart where To is the period 
of the signal. One application of this technique is pitch-period measurement in speech signals. The time gap 
between the peaks in the auto-correlation function of a segment of speech provides an estimate for the pitch 
period of voiced speech.



10.8.2 Noise reduction using correlation techniques

In many real-world applications the signals to be processed are immersed and possibly masked by noise. 
Such situations occur in noisy communication channels, long-range radar and sonar systems. In such cases 
correlation techniques can be used to extract and detect the signal from the background additive noise. This 
is achieved by correlating the noisy signal with a replica of the expected signal waveform. While the noise is 
uncorrelated with the replica signal, the signal immersed in noise will strongly correlate with the replica signal 
giving a large output value, well above the background noise. Mathematically this can be argued as follows 
(the proof here is not rigorous but does make the point):

Let the signal waveform consist of N  samples values s0, 8 ,̂ s2, ..... sN-^. Suppose this signal is
correlated by samples of a white noise having a standard deviation of on (and variance <r£). The 
ratio of the signal power to that of the noise prior to any processing is thus:

SignalPower o9 
N oisePower cr%

where o* is the signal variance. Suppose we correlate this noisy signal with a replica of the original 
signal in an iV-point correlator. At the instant when the signal waveform masked by the background 
noise is aligned with its replica in the correlator, the output attains its maximum. At this instant the 
amplitude of signal component at the output of the correlator would be

Sout *  «0 + 51 + A  + S3 + ...... + ^  Nof (13)

The corresponding output signal power would thus be:

Output Signal Power = N2oA. (14)

The noise would also be modified by the operation of the correlator. In this case each output noise 
sample is equal to the sum of weighted input noise samples-the weighting coefficients being, of 
course, the samples of the reference signal. Hence each output noise sample is equal to the summa
tion of N  independent random numbers having standard deviations soon, s^on, s2on, ..... , sN-^on.
Since variances are additive in this case, the variance of the output noise samples is therefore

= &  + ‘ V  + .........05)

The ratio of the output signal power to that of the output noise is thus

( S \  Output Signal Power N zcr* ATa f  „  nc\
Vn ) o ut~ (1b)



This indicates that the correlation process improves the signal to noise ratio by

Cq = 10 logio(iV) dB's (17)

which is defined as the ‘Correlator Gain’.

10.8.3 Pulse-compression

Another application of correlation is in radar and sonar systems where pulse compression techniques are 
used to improve range resolution of the systems. In many active sonar and pulsed radar systems, a short 
pulse is transmitted followed by a listening period that represents a ‘look’ in the range dimension. The two 
way propagation duration, i.e. the time it takes for the pulse to travel to a target and back gives an indication 
of the range of that target. The range resolution i.e. the shortest distance between two targets that can be 
resolved, is equal to ^  where r  is the pulse duration and c is the speed of wave propagation in the medium. 
For example for a radar system a 10ns pulse corresponds to a range resolution of 1.5km. Better range 
resolutions necessitate a shorter pulse. Unfortunately the transmitted pulses cannot be made too short. This 
is because most systems are peak-power limited and a shorter pulse means less signal power which in turn 
can severely limit operational range of the system.

Pulse compression techniques allow a radar or sonar to utilize a long pulse to achieve large radiated energy, 
but simultaneously to obtain the range resolution of a short pulse. This is accomplished by using a coded 
signal instead of a simple CW pulse. At the receiver the returned signal is correlated with a replica of the coded 
transmit signal. The returned signal would only correlate heavily with the replica for a short time, corresponding 
to when the echoes are aligned with the replica. This results in a narrow pulse appearing at the output of 
the correlator, everytime a match occurs. A signal that is commonly used in pulse-compression techniques 
is the lineal FM signal. An example of such a signal is depicted in figure 10.15a. The autocorrelation of such 
a waveform is shown in figure 10.15b. Note that the autocorrelation function has a narrow peak at the origin, 
with small side lobes elsewhere, i.e. the initially long FM pulse is ‘compressed’ into a narrow pulse after the 
autocorrelation process.

(a) a linear-FM pulse.

Figure 10.15 Pulse compression using a coded signal

It can be shown that the degree of compression is equal to BT  where B  is the bandwidth of the coded pulse 
and T is its duration. The effective pulse duration, as far as the range resolution is concerned, will thus be:

T 1Effective Pulse Duration = — —  = —
B l  B

(18)



If the 10fis pulse in the previous exampie is coded in such a way that its bandwidth becomes 5MHz, the 
effective pulse duration would be:

---- rrrr = 0.2/iS
5 x 106

This corresponds to a range resolution of 30 metres.

10.8.4 System identification using correlation

Another important application of cross-correlation is in the use of random-noise test signals to identify the 
impulse response of a system. For a system with an unknown impulse response h(t), the output y(t) is related 
to an input x(t) by +oo

y(t) -  f  h(u)x{t — u)dt (19)
J  — oo

The cross-correlation between the input x(t) and the output y(t) is defined by

t T1 r&xv(t) -  Jim -= x(t)y(t + r)dt 
T —OO 1 J 0

1 rT r +°°
= lim —  / x(t) I h(u)x(t + t — u)dudt 

T — oo 1 J o  J _ OQ

Using simple mathematical manipulation it can be shown that

/+oo
h(u)$xx(T -  u)du

-oo

(20)

(21)

i.e. The cross-correlation between x(t) and y(t) is the convolution of the impulse response h(t) with the 
auto-correlation of the input signal.

If the input signal consists of broad-band white noise then its auto-correlation function, $ xx(r), would be an 
impulse (since a noise signal only correlates with itself at zero delay, r = 0). Referring to equation (21) it 
therefore follows that for broad-band noise input, the output $ xy(r) would be a direct measure of h(r) since

r
y(r) = /

J  — (
h(u)6(r — u)du = h(r) (22)

Figure 10.16 illustrates the technique.

Figure 10.16 System identification using correlation



10.8.5 The Discrete Fourier Transform (DFT)

DFT has application in many signal processing areas, including speech processing, radar, sonar, image 
processing and control. This transform has often been performed using Cooley and Tukey radix-2 FFT 
algorithm (reference 3). This algorithm reduces the number of multiplications compared to direct evaluation 
of the DFT at the expense of complicating the required indexing.

Other algorithms have also been developed which allow the evaluation of the DFT via correlation (convolution) 
techniques (references 1,2, 4, & 5). The IMS A100 device can be used to perform high speed DFT’s based 
on these convolutional algorithms. Using the IMS A100 as a peripheral to a general-purpose microprocessor 
converts a slow host into a high-performance DFT processor. A separate application note available from 
INMOS describes how these algorithms can be implemented using the IMS A100 devices.
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