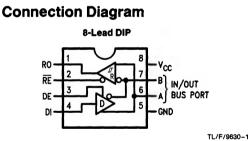
National Semiconductor

DS96176 RS-485/RS-422 Differential Bus Transceiver

General Description

The DS96176 Differential Bus Transceiver is a monolithic integrated circuit designed for bidirectional data communication on balanced multipoint bus transmission lines. The transceiver meets EIA Standard RS-485 as well as RS-422A.


The DS96176 combines a TRI-STATE® differential line driver and a differential input line receiver, both of which operate from a single 5.0V power supply. The driver and receiver have an active Enable that can be externally connected to function as a direction control. The driver differential outputs and the receiver differential inputs are internally connected to form differential input/output (I/O) bus ports that are designed to offer minimum loading to the bus whenever the driver is disabled or when $V_{CC} = 0V$. These ports feature wide positive and negative common mode voltage ranges, making the device suitable for multipoint applications in noisy environments.

The driver is designed to handle loads up to 60 mA of sink or source current. The driver features positive and negative current-limiting and thermal shutdown for protection from line fault conditions. Thermal shutdown is designed to occur at junction temperature of approximately 160°C. The receiver features a typical input impedance of 15 k Ω , an input sensitivity of ± 200 mV, and a typical input hysteresis of 50 mV.

The DS96176 can be used in transmission line applications employing the DS96172 and the DS96174 quad differential line drivers and the DS96173 and DS96175 quad differential line receivers.

Features

- Bidirectional transceiver
- Meets EIA Standard RS-422A and RS-485
- Designed for multipoint transmission
- TRI-STATE driver and receiver enables
- Individual driver and receiver enables
- Wide positive and negative input/output bus voltage ranges
- Driver output capability ±60 mA Maximum
- Thermal shutdown protection
- Driver positive and Negative current-limiting
- High impedance receiver input
- Receiver input sensitivity of ±200 mV
- Receiver input hysteresis of 50 mV typical
- Operates from single 5.0V supply
- Low power requirements

Top View

Order Number DS96176CJ or DS96176CN See NS Package Number J08E or N08E

Function Table

	Driver							
Input	Input Enable Outputs							
DI	DE	A	B					
н	н	н	L					
L	н	L	н					
х	L	Z	Z					

Receiver

Differential Inputs	Enable	Output
A-B	RE	R
$V_{ID} \ge 0.2V$	L	н
$V_{ID} \leq -0.2V$	L	L
X	н	Z

H = High Level

L = Low Level

X = Immaterial

Z = High Impedance (off)

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature Range Ceramic DIP Molded DIP	−65°C to +175°C −65°C to +150°C
Lead Temperature Ceramic DIP (soldering, 60 sec.) Molded DIP (soldering, 10 sec.)	300°C 265°C
Maximum Power Dissipation* at 25°C Cavity Package Molded Package	1300 mW 930 mW
Supply Voltage	7.0V
Differential Input Voltage	+ 15V/ - 10V
Enable Input Voltage	5.5V
*Derete cevity neckede 8 7 mW/°C above 25°C; d	erete molded DIP nackade

Recommended Operating Conditions

	Min	Тур	Max	Units
Supply Voltage (V _{CC})	4.75	5.0	5.25	-V
Voltage at Any Bus Terminal (Separately or Common Mode)	- 7.0		12	v
Differential Input Voltage (VID)			±12	v
Output Current HIGH (I _{OH}) Driver Receiver			-60 -400	mA μA
Output Current LOW (I _{OL}) Driver Receiver			60 16	mA mA
Operating Temperature (T _A)	0	25	70	°C

*Derate cavity package 8.7 mW/*C above 25°C; derate molded DIP package 7.5 mW/*C above 25°C.

Electrical Characteristics

Over recommended temperature, common mode input voltage, and supply voltage ranges, unless otherwise specified (Notes 2 and 3)

DRIVER SECTION

Symbol	Parameter	Cone	ditions	Min	Тур	Max	Units
VIH	Input Voltage HIGH			2.0			V
VIL	Input Voltage LOW					0.8	V
V _{OH}	Output Voltage HIGH	$I_{OH} = -20 \text{ mA}$			3.1		V
VOL	Output Voltage LOW	l _{OL} = 20 mA			0.85		V
VIC	Input Clamp Voltage	$l_{\rm l} = -18 {\rm mA}$				- 1.5	V
VOD1	Differential Output Voltage	I _O = 0 mA				6.0	V
VOD2	Differential Output Voltage	$R_L = 100\Omega$, Figur	re 1	2.0	2.25		v
		$R_L = 54\Omega$, Figure	9 1 and 2	1.5	2.0		
∆ V _{OD2}	Change in Magnitude of Differential Output Voltage (Note 4)	R _L = 54Ω V _{CM} = 0V <i>Figure 1</i> and 2				±0.2	v
Ì		$R_L = 100\Omega$ Figure	e 1				
V _{OC}	Common Mode Output Voltage (Note 5)	$R_L = 54\Omega \text{ or } 100\Omega, Figure 1$				3.0	v
∆ V _{OC}	Change in Magnitude of Common Mode Output Voltage (Note 4)					±0.2	v
10	Output Current (Note 4)	Output Disabled	$V_0 = 12V$			1.0	mA
	(Includes Receiver I _I)	0	$V_0 = -7.0V$			-0.8	
ĥн	Input Current HIGH	$V_1 = 2.4V$				20	μA
կլ	Input Current LOW	$V_{\rm I}=0.4V$				- 100	μΑ
los	Short Circuit Output Current	$V_0 = -7.0V$				-250	
	(Note 9)	V _O = 0V				-150	mA
		$V_{O} = V_{CC}$				150	
		V _O = 12V				250	
lcc	Supply Current	No Load	Outputs Enabled			35	mA
		Outputs Disable				40	

Electrical Characteristics (Continued) Over recommended temperature, common mode input voltage, and supply voltage ranges, unless otherwise specified

RECEIVER SECTION

Symbol	Parameter	Cond	itions	Min	Тур	Max	Units
V _{TH}	Differential Input High Threshold Voltage	$V_0 = 2.7V, I_0 = -0$).4 mA			0.2	v
V _{TL}	Differential Input Low Threshold Voltage (Note 6)	$V_0 = 0.5V, I_0 = 8.0 \text{ mA}$		-0.2			v
$v_{T+} - v_{T-}$	Hysteresis (Note 7)	V _{CM} = 0V			50		mV
VIH	Enable Input Voltage HIGH			2.0			v
V _{IL}	Enable Input Voltage LOW					0.8	V
V _{IC}	Enable Input Clamp Voltage	$I_1 = -18 mA$				- 1.5	v
V _{OH}	Output Voltage HIGH	$V_{ID} = 200 \text{ mV}, I_{OH} = -400 \ \mu\text{A},$ Figure 3		2.7			v
VOL	Output Voltage LOW	Figure 2	$I_{OL} = 8,0 \text{ mA}$			0.45	v
			l _{OL} = 16 mA			0.50	
loz	High Impedance State Output	$V_0 = 0.45V \text{ to } 2.4V$				±20	μA
ц — — — — — — — — — — — — — — — — — — —	Line Input Current (Note 8)	Other Input = 0V	$V_{l} = 12V$			1.0	mA
			$V_1 = -7.0V$			0.8	
Чн	Enable Input Current HIGH	V _{IH} ≈ 2.7V				20	μA
Ι _{ΙL}	Enable Input Current LOW	$V_{IL} = 0.4V$				- 100	μA
RI	Input Resistance				12		kΩ
los	Short Circuit Output Current	(Note 9)		- 15		-85	mA
Icc	Supply Current (Total Package)	No Load Outputs Enabled	Outputs Enabled			40	mA
			Outputs Disabled				

Driver Switching Characteristics V_{CC} = 5V, T_A = 25°C

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{DD}	Differential Output Delay Time	$R_L \approx 60\Omega$, Figure 4		15	25	ns
t _{TD}	Differential Output Transition Time	$R_L \approx 60\Omega$, Figure 4		15	25	ns
t _{PLH}	Propagation Delay Time, Low-to-High Level Output	R _L = 27Ω, <i>Figure 5</i>		12	20	ns
t _{PHL}	Propagation Delay Time, High-to-Low Level Output	$R_L = 27\Omega$, Figure 5		12	20	ns
t _{PZH}	Output Enable Time to High Level	$R_L = 110\Omega, Figure 6$		25	35	ns
tPZL	Output Enable Time to Low Level	R _L = 110Ω, <i>Figure 7</i>		25	35	ns
t _{PHZ}	Output Disable Time from High Level	$R_L = 110\Omega$, Figure 6		20	25	ns
t _{PLZ}	Output Disable Time from Low Level	$R_1 = 110\Omega$, Figure 7		29	35	ns

Receiver Switching Characteristics $V_{CC} = 5.0V$, $T_A = 25^{\circ}C$

Symbol	Parameter	Conditions	Min	Тур	Max	Units
^t PLH	Propagation Delay Time, Low-to-High Level Output	$V_{ID} = 0V \text{ to } 3.0V$ $C_L = 15 \text{ pF}, Figure 8$		16	25	ns
t _{PHL}	Propagation Delay Time, High-to-Low Level Output			16	25	ns
tezh	Output Enable Time to High Level	C _L = 15 pF, <i>Figure 9</i>		15	22	ns
tPZL	Output Enable Time to Low Level		-00	15	22	ns
t _{PHZ}	Output Disable Time from High Level	C _L = 5.0 pF, <i>Figure 9</i>		14	30	ns
tPLZ	Output Disable Time from Low Level			24	40	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual operation.

Note 2: Unless otherwise specified min/max limits apply across the 0°C to +70°C range for the DS96176. All typicals are given for $V_{CC} = 5V$ and $T_A = 25^{\circ}C$.

Note 3: All currents into the device pins are positive; all currents out of the device pins are negative. All voltages are referenced to ground unless otherwise specified.

Note 4: $\Delta |V_{OD}|$ and $\Delta |V_{OC}|$ are the changes in magnitude of V_{OD} and V_{OC} , respectively, that occur when the input is changed from a high level to a low level. Note 5: In EIA Standards RS-422A and RS-485, V_{OC} , which is the average of the two output voltages with respect to ground, is called output offset voltage, V_{OS} . Note 6: The algebraic convention, where the less positive (more negative) limit is designated minimum, is used in this data sheet for common mode input voltage and threshold voltage levels only.

Note 7: Hysteresis is the difference between the positive-going input threshold voltage VT+, and the negative-going input threshold voltage, VT-.

Note 8: Refer to EIA Standard RS-485 for exact conditions.

Note 9: Only one output at a time should be shorted.

Parameter Measurement Information

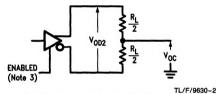
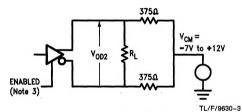
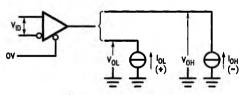
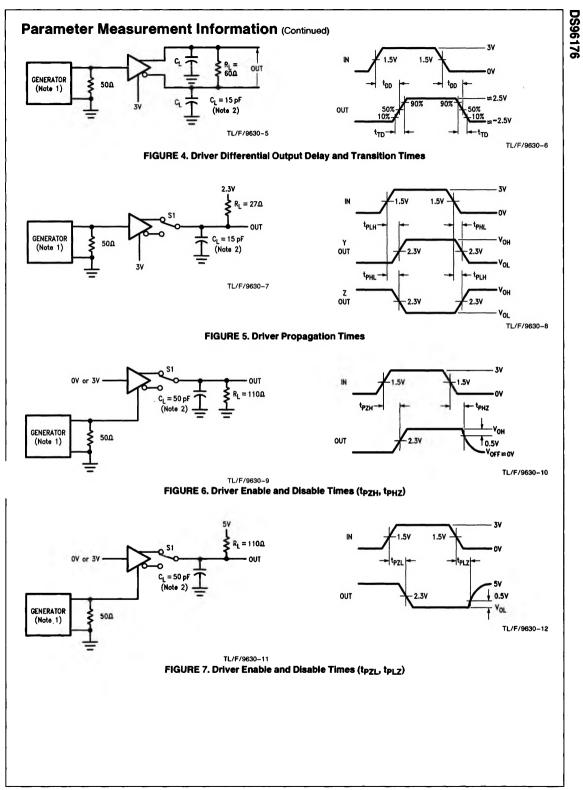
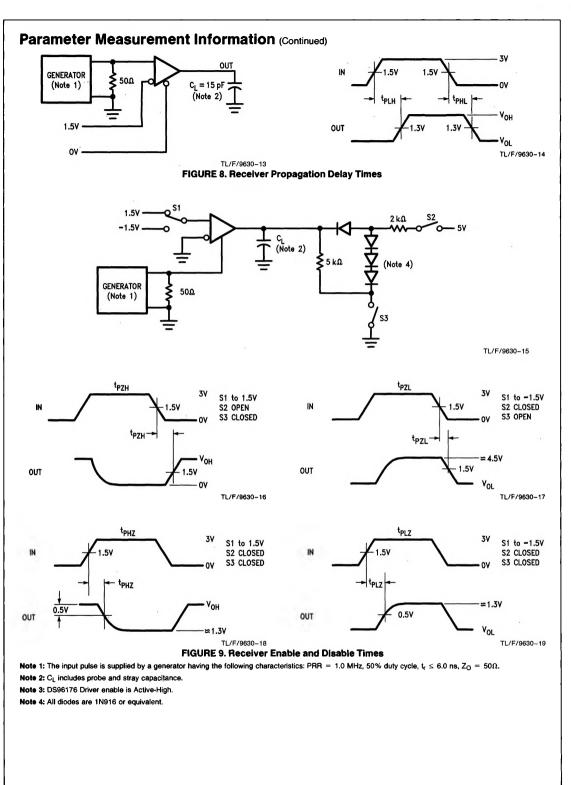
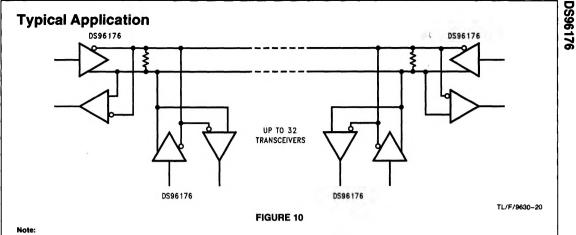
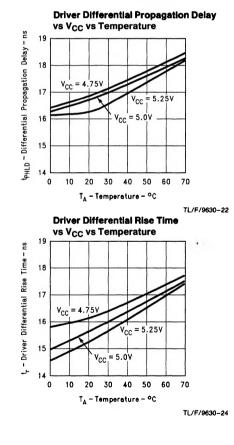



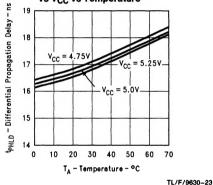

FIGURE 1. Driver VOD and VOC

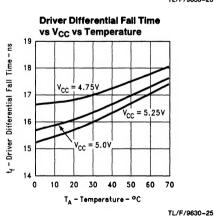




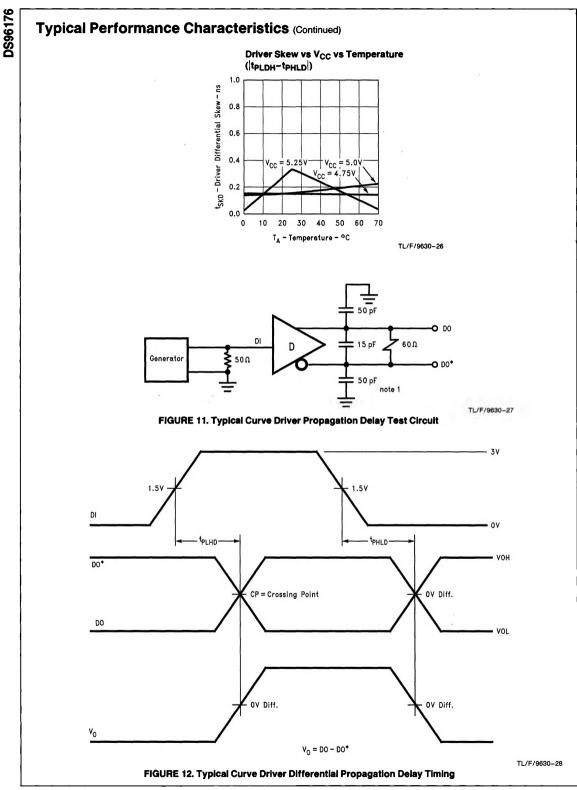

FIGURE 3. Receiver VOH and VOL

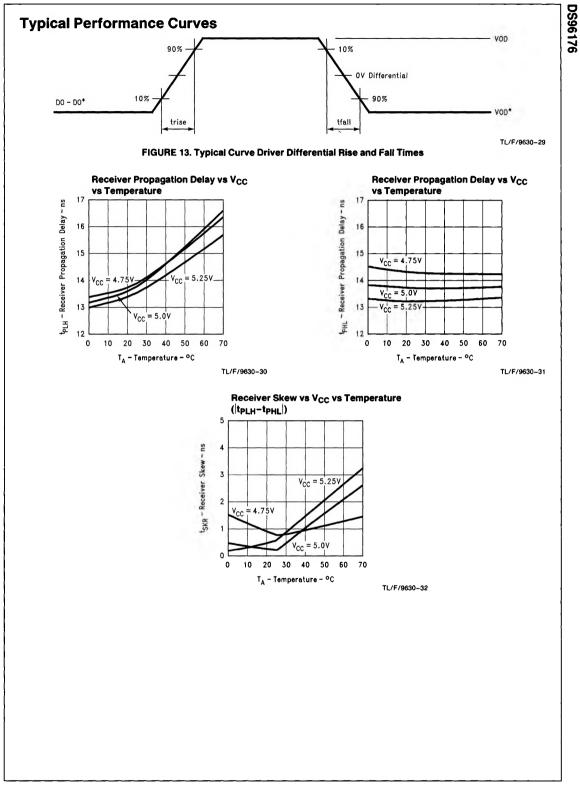
TL/F/9630-4

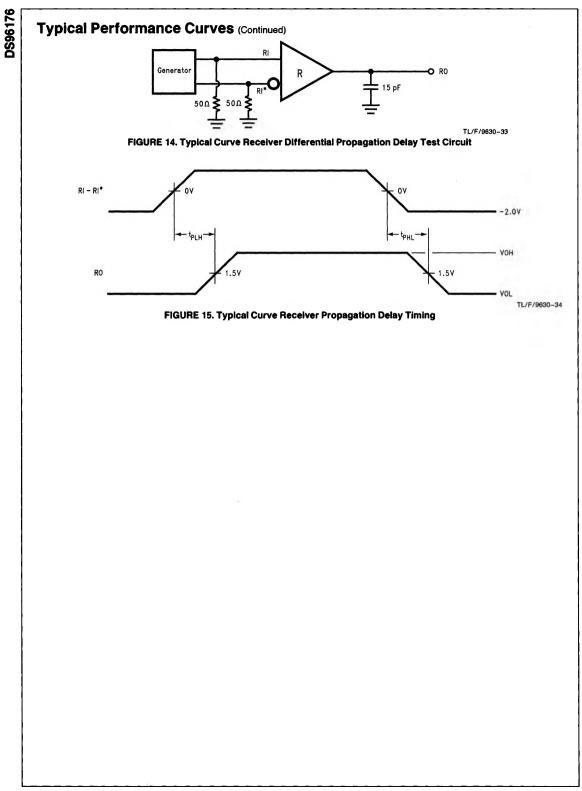





The line length should be terminated at both ends of its characteristic impedance. Stub lengths off the main line should be kept as short as possible.


Typical Performance Characteristics


Driver Differential Propagation Delay vs V_{CC} vs Temperature



http://www.national.com

4-131

