
National Semiconductor

DM93S46 High-Speed 6-Bit Identity Comparator

General Description

The DM93S46 is a very high speed 6-bit identity comparator. The device compares two words of up to six bits and indicates identity in less than 12 ns. It is easily expandable to any word length by using either serial or parallel expansion techniques. When the Enable input (E) is LOW, it forces the output LOW.

Order Number DM93S46N See NS Package Number N16E

Pin Name	Description	
A0-A5	Word A Inputs	
B0-B5	Word B Inputs	
E	Enable Input (Active High)	
A=B	A Equal to B Output	

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage	7V
Input Voltage	5.5V
Operating Free Air Temperature Range	
DM93S	0°C to +70°C
Storage Temperature Range	-65°C to +150°C

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM93S46			Units	
Cymbol	T drameter	Min	Nom	Max	Olinta	
V _{CC}	Supply Voltage	4.75	5	5.25	V	
ViH	High Level Input Voltage	2			V	
VIL	Low Level Input Voltage			0.8	V	
ЮН	High Level Output Current			-1	mA	
lol	Low Level Output Current			20	mA	
T _A	Free Air Operating Temperature	0		70	°C	

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 1)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min$, $I_I = -18 mA$			-1.2	V
V _{OH}	High Level Output Voltage	$V_{CC} = Min, I_{OH} = Max$ $V_{IL} = Max$	2.7	3.4		v
V _{OL}	Low Level Output Voltage	$V_{CC} = Min, I_{OL} = Max$ $V_{IH} = Min$		0.35	0.5	v
կ	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 5.5V$			1	mA
ін	High Level Input Current	$V_{CC} = Max, V_I = 2.7V$			50	μΑ
۱ _{IL}	Low Level Input Current	$V_{CC} = Max, V_I = 0.5V$			-20	mA
los	Short Circuit Output Current	V _{CC} = Max (Note 2)	-40		-100	mA
Icc	Supply Current	V _{CC} = Max			70	mA

Note 1: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics

 $V_{CC} = +5.0V$, $T_A = +25^{\circ}C$ (See Section 1 for waveforms and load configurations)

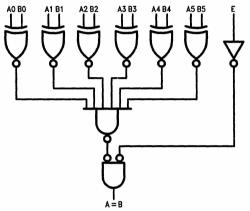
Symbol	Parameter	Conditions	CL = 15 pF		Units
			Min	Max	Unita
t _{PLH}	Propagation Delay	E = 4.5V, Other Inputs = 4.5V,	3.0	17	
tPHL	A_n or B_n to $A = B$	Test Each Input Individually	3.0	17	ns
t _{PLH}	Propagation Delay	E = 4.5V, Other Inputs = Gnd,	3.0	14	
t _{PHL}	A_n or B_n to $A = B$	Test Each Input Individually	3.0	15	ns
tPLH	Propagation Delay	$A_n = B_n$	2.0	10	
t _{PHL}	E to A = B		2.0	10	ns

Functional Description

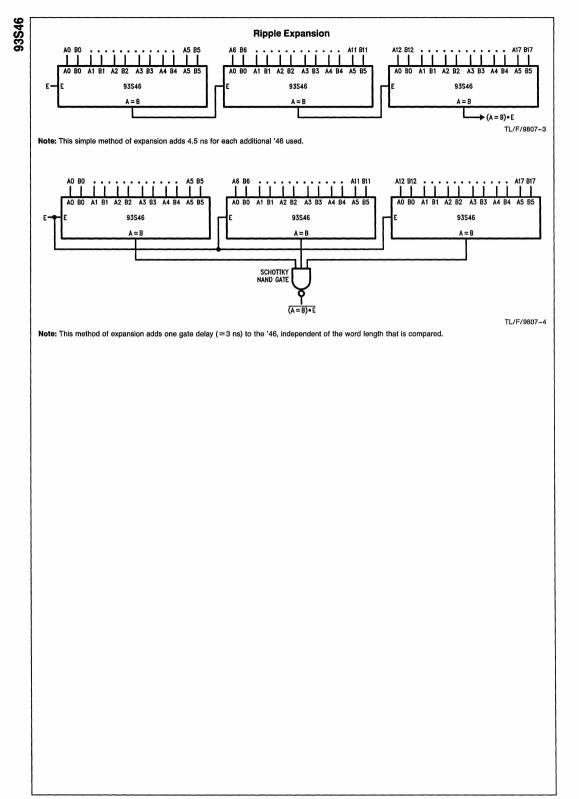
The DM93S46 is a very high speed 6-bit identity comparator. The A = B output is HIGH when the Enable (E) is HIGH and the two 6-bit words are equal. Equality is determined by Exclusive-NOR circuits which individually compare the equivalent bits from each word. When any two of the equivalent bits from each word have different logic levels, the A = B output is LOW.

$$(A = B) = (A\overline{0 \oplus B0}) \bullet (A\overline{1 \oplus B1}) \bullet (A\overline{2 \oplus B2}) \bullet (A\overline{3 \oplus B3}) \bullet (A\overline{4 \oplus B4}) \bullet (A\overline{5 \oplus B5}) \bullet E$$

An active HIGH Enable (E) provides a means of fast ripple expansion. By connecting the A = B output of the first stage of the comparator to the enable of the next stage, the comparator can be expanded in 6-bit increments at an additional 4.5 ns per stage. An even faster expansion technique is achieved by connecting the A = B outputs to a Schottky NAND gate. This method compares two words of up to 78 bits each in 15 ns (typical) using the '133 13-input Schottky NAND gate.


Truth Table

Inputs		Output
E	A _n , B _n	$\mathbf{A} = \mathbf{B}$
L	$A_n = B_n$	L
L	A _n ≠ B _n	L
н	A _n ≠ B _n	L
н	$A_n = B_n$	Н


H = HIGH Voltage Level

L = LOW Voltage Level

Logic Diagram

TL/F/9807-5

