
Using Micro Concurrent Pascal in RCA Development Systems

with the CDP1804Pl and CDM5332Pl

By David C. Stanley

Micro Concurrent Pascal (mCP)'*'is designed for Wl:iting real-time computer

control applications and is best suited for real-time executions that

require multitasking operating systems. MCP allows the programmer to

construct interrupt driven tasks that can share data, communicate

information, and be synchronized for execution. RCA has developed a 2-chip

set (CDP1804Pl and CDM5332Pl) which contains a pseudo-code (p-code)

interpreter and facilitates use of mCP in end use systems. This article

describes mCP, the RCA chip set, and how to generate mCP code.

MCP FEATURES

A task is called a "process" in mCP. Processes are independent programs

that run concurrently by sharing control of the microrocessor. Routines

and the data shared between them are placed in a data structure called a

"monitor". Processes access shared data only through monitors that enforce

exclusive use of data (allow only one process at a time to use it).

"Device monitors" allow processes to access shared devices.

COMPILER and INTERPRETER

The mCP compiler written by Enertec Inc., resides on Compuserve~ The

lrllf i n t 0. user• s __ m_a_n_u_a_l_f_o_r_m_c_p_'t may be
)() Corflpo5er1Je -.................................

aquired from RCA Systems Marketing

An mCP program may be

generated with an RCA development system editor (CDS or MCDS) and up-loaded

to Compuserve for compilation. The Pascal file may also be generated with

~Micro Concurrent Pascal and mCP are registered tradenames of Enertec,

Inc., Lansdale, PA.

Compuserve's FILGE (FILe GEnerator) editor and compiled. The mCP compiler

outputs the p-code application program that is down-loaded to the CDP1804P:(

microcomputer system and executed by the interpreter/kernel. This

interpreter is divided into two sections.

The first section (core) resides in the 2K ROM of the CDP1804Pl~and is

independent of the second section. The core section of the interpreter

permits execution of a restricted subset of mCP language (see table 1).

The restrictions on the language are concurrency, set operations and SET

data types, bit manipulation and string move subroutines, and REAL

(floating-point) data types. This subset of mCP ("micro Pascal") is

compatible with sequential Pascal defined in Jensen and Wirth's: PASCAL

2.
User Manual and Report. A memory map for the core interpreter system is

shown in appendix A. A user generated branch/parameter table located on

page 0 must contain address pointers for the start of the p-code program

and boundries of a contiguous RAi.~ memory space for interpreter working

storage (see appendix A). The 64 byte on-chip RAM of the CDP1804Pl can be

used for this working storage only with the core interpreter. Immediately

following the branch/parameter table should be a list of the built-in

machine language subroutines for the CDP1804Pl (see appendix B). Users may

write their own subroutines by extending the list up to a total of 128

routine addresses. Programmers must write their own interrupt routines or

poll I/O ports for devices that do not generate interrupts. This is

accomplished by using Pascal functions and procedures INN, OUT, PEEK, and

POKE. Appendix C describes interrupt handling including CDP1804A

Timer/counter interrupts.

The second section (extension) of the interpreter is designed to work

with the core and extends support to the complete mCP ~anguage. Table 2

shows the additional language features of the extension ROM. A memory map

TABLE 1

C OPl 804Pl MICRO CONCURRENT PASCAL

CORE LANGUAGE

WORD SYMBOLS

AND ARRAY

DIV DO

EXTERNAL FOR

OF OR

TO TYPE

WITH XOR

STANDARD FUNCTIONS

ABS

MAXI NT

ADDR

ORD

STANDARD PROCEDURES

DEC INC

STANDARD DATA TYPES

ADDRESS BOOLEAN

BEGIN

DOWN TO

FUNCTION

PROCEDURE

UNIV

ADR

PEEK

OUT

CHAR

CASE

ELSE

IF

RECORD

UNTIL

CHR

PRED

POKE

INTEGER

CONST

END

MOD

REPEAT

VAR

INN

succ

CYCLE

ENTRY

NOT

THEN

WHILE

TABLE 2

CDf' 1804P1MICRO CONCURRENT PASCAL

EXTENSION LANGUAGE (4K ROM)

WORD SYMBOLS

CLASS

MONITOR

. DEVJCE_MON

PROCESS

STANDARD FUNCTIONS

CONV EMPTY

STANDARD PROCEDURES

CONTINUE DELAY

STANDARD TYPES

QUEUE REAL

DOIO

SET

STR_STOP

DIDDLE

IN

STRUC_CON

TRUNC

INITQUEUE

INIT

WORD

STR_COUNT

of the extended interpreter system is shown in appendix A. The extension

ROM replaces the branch/parameter table used by the core interpreter and

sets up its own table identical in layout for linkage with the core. This

table contains a page pointer to an address table for p-code subroutines.

The user must generate a branch/parameter table starting at page 10

hexadecimal in same manner as with the core (see appendix A). Figure 1

shows a typical CDP1804Pl mCP system with the CDM5332Pl extension ROM.

CDS

To up-load and down-load Pascal programs from Compuserve, the CDS Micro NET

Exective program is needed. This program is available in the RCA User

Group and may be booted to a CDS system disk using the boot load program

described in the Compuserve Manual. A modem is required. The CDS IV

(18S008) connects to the modem through the connector on the back of the

system. The CDS III (18S007) needs an 18S641 UART board and a modified

18S516 cable to connect to the modem. This modification consists of

reversing pins 2 and 3 of the 10 pin connector on the 641 UART board. The

modem is set to full duplex and originate mode. The 641 UART board is

placed in an I/O slot with the N lines wired to it. Appendix D shows an

example of the up-load and down-load sequence.

To use the CDP1804Pl in the CDS IV and CDS III, the CDP18S605 (CDS IV)

and the CDP18Sl02Vl (CDS III) CPU boards must be modified by inverting the

WAIT and CLE'AR lines and switching them (ie. WAIT to pin 3 and CLEAR to pin

2 of the CPU) and disconnecting pin 16 (ME/EMS) and letting it float. The

CDM5332Pl extension interpreter may be copied onto disk using an altered

CDP18S480 PROM programmer board': This alteration consists of adding switch

to pin 21 of socket XU3 (see figure 2). The 5332Pl can then be placed in

socket XU3 and read as two 2716's. The first 2K of the interpreter can be

MA©
MA1
MWRt--+--~ MRD...._ __
Tf A1---~--11M

CDP IBC>'tPl
MPU

CDPIB?>I c.Dl"\5332Pl GDM<o\l(o
LATc...rl DELDDE '+K Ro/\!\ 2.K RAM

.U-P
&1-P
&0-P
00-P
01-P
OZ-P 6

E ,~I
07-P 11

xuz
ZT0412701

XUI
•14211702

vcc-s~
------~

A3-P ... _,.
AS-P
All-P
A7-P

+IZ V-1

~~-~·z,._ ... ~-~11,._...,;40('1U.l~S-~ZTOIWE-P

Cl

$1 (SHOWN IN 1142 POSITION I

r."l
--~EXT -eV(JZl

+~~ --'\IV\

Vcc•S

vcc-s
184ZCS-N

1842MWll-N 13 IZ
llOMl·P---~Do----'

F;~ 2 - P(Dej vovnvri; ng) Olj i c.. of
Prog ra YYl me V' mOd v1e

"'cc-s

~MZ-P

PRo,.vt

copied into locations 0800 - 1000 with the switch at Vss. The second 2K is

copied into locations 1000 - 17FF with the switch at Vdd (collector of

transistor Ql). The PROM board may also be used as normal with the switch

in this position. Once the interpreter is loaded to disk (using save

command), it may be loaded into RAM at location 0000 for program

development. Once development is complete, the CDM5332Pl can be used for

prototype hardware.

MCDS

The 18S601 CPU board must be modified for the CDP1804Pl (see appendix E).

The following links must be altered:

1. Remove links 4:13 and 2:15 of LK36

2. Add links 3:14 and 1:16 of LK36

3. Remove link A:B of LK37

The extension ROM must be located at 0000 - OFFF and RAM must immediately

follow for the branch/parameter table (see appendix F). The following must

be done:

1. Add link 6:11 and 1:16 of LKll

2. Add link 5:12 and 1:16 of LKlO

3. Remove link 1:18 of LK4

4. Disconnect pin 2 of U28 from

All-P and connect to + 5V

5. Connect All-P to pin 21 of U24

With this set-up, the editor and assembler cannot be used because RAM is

needed at location 0000 for their operation. The FILGE editor on Compuserve

may be used or the MCDS editor may be used by replacing the hardwire links

with DIP switches at LKlO and LKll. Then when using the editor, switch RAM

to location 0000 (LKll - 5:12) and the extension ROM to location 1000

(LKlO - 6:11). When ready to interpret a p-code program, switch them back

(LKll 6:11; LKlO 5:12). Another option is to purchase a second

CDP18S601 board and modify it for use with mCP. The Pascal program can be

edited with the MCDS 601 board and replaced with the mCP 601 board for

p-code interpretation. The extension ROM is the 4K CDP5332Pl and is placed

in socket U24 of the 18S601 board.

The MCDS Micro NET Executive is needed to up-load and down-load

Pascal programs and is also available on Compuserve. The program may be

booted into the MCDS system and burned into a 2716 EPROM which is placed in

socket Ul3 (location EOOO) of the CDP18S652 Tape I/O and Memory board. The

ROM in socket U3 must be removed because it is mapped at COOO (since this

ROM is part of BASIC 3, BASIC cannot be used). The MCDS communicates with

the modem with the same hardware as the CDS III (18S007). The CDP18S641

UART board plugs right into any open socket. An example of the up-load and

down-load sequence is shown in appendix G.

Summary

Real-time mCP application programs can be developed on MCDS and CDS

development systems. A version of sequential Pascal (micro Pascal) is also

available when using only the CDP1804Pl. Both mCP and micro Pascal can be

compiled

up-loaded

using the mCP compiler residing on Compuserve. These programs are

into Compuserve for compilation and down-loaded into the

development system for execution. With minimal changes to existing

development systems, the ~DP1804Pl and CDM5332Pl can be developed and then

used in the final application system

FOOTNOTES

1. RCA Microprocessors User Group Compuserve User's Guide, July 1982

2. K. Jensen and N. Wirth, PASCAL User Manual and Report

(second edition),Springer-Verlag, New York, 1974

3. Hardware Reference for the CDP1804A data sheet,

File 1371

4. D. Block, Programming 2732 PROM's with the CDP18S480

PROM Programmer, ICAN-6847

P-CODE STORAGE REOUIRD!ENTS

The length of the P-code is the sum of the code length and the constant

length found in the program listing file output by the mCP compiler. The

constant storage area follows the program code contiguously.

RA.'i WORKI~G STORAGE REQUIRD!E~iS

The amount of RA.~ actually used by a program is computed during inter

preter initialization. The address.of the next free byte of R.A..'i is located

in the first word of RA.."1 storage.

The amount of R.A."1 used by a program is calculated:

24 + stack length + variable size

The stack length is the first parameter on the INIT PROCESS P-code. The

variable size is the second parameter. The parameter length is the third

paraI:ieter (it is :ero for cicro Pascal). The INIT PROCESS P-code is found

at the end of a "long" listing file output by the compiler.

Micro Pascal uses three bytes of the R2 syste~ stack. Micro Concurrent

Pascal uses three bytes of the R2 system stack plus 13 bytes when floating

point subroutines are used.

In a mCP program there may be several INIT PROCESS p-codes. These

must be summed to calculate the RAM storage requirements. Also the DOIO

table size and stack margin parameter must be included.

CDPl804P1MICRO COl\'.CURRENT PASCAL
MEMORY MAP

0000

xx xx

cooo

C7FF

csoo

C83F

(CORE INTERPRETER ONLY)

BRANCH/
PARAMETER

TABLE

~---------------------

USER DEFINED
MACHINE

LANGUAGE
SUBROUTINES
(OPTIONAL)

~---------------------

APPLICATION
PROGRAM
P-CODE

.RAM FOR
STACK

WORKING
STORAGE

1804 PASCAL
INTERPRETER

ROM (ON-CHIP)

ON-CHIP RAM
(NOT USED)

!lPPEt\JOt x A CoAJT.

COP1804P1MICRO CONCURRENT PASCAL
MEMORY MAP WITH EXTENSION ROM

0000

OFFF

1000

xx xx

coco

C7FF

CBOO

C83F

MCP
EXTENSION

ROM

BRANCH/
PARAMETER

TABLE

-------------------------~

USER DEF I NED
MACHINE

LANGUAGE
SUBROUTINES
(OPTIONAL)

-------------------------~·

APPLICATION
PROGRAM
P-CODE

RAM FOR
STACK

WORKING
STORAGE

1804 PASCAL
INTERPRETER

ROM (ON-CHIP)

ON-CHIP RAM
(NOT USED)

,· .

RAM STORAGE LAYOL"T

APPEND I}(A c oA) r.

RAM BOTTOM + 0

2

4

6

8

10

12

14

16

. --18

AJ)DRESS OF NEXT F!IBE BYTE OF R.A.'1

1804 COt:"NTDOWN TIMER

CURRE~T LIXE Nl~ER

0 I ERROR CODE

P-CODE POINTER OF LAST F.RROR

RESERVED FOR PO'JZR FAIL

R.::SER.Vi:'.D

RESERVED

RESERVED

~ PASCAL DATA STACK

.
~ PASCAL VARIABLES + 6

NEXT FREE BYTE OF RA..'1 ___,

~'- FREE STORAGE

SYSTE~ STACK
FOR INTER..~l:'PTS , I/O, ASSE"IBLY

RAM TOP R(2)
LANGUAGE Sl~ROUTINES, ETC.

{

~

~ >

A~PEAJ D t X Ir

The interpreter clears memory as part of its initialization. To

prevent memory clear the initialization sequence may be altered.

The following patch will prevent memory clear in micro Pascal:

Location

0003

0060

Data

0060 address of patch (can be any

68CD000f /-
suitable locatio

/

ED 68676865 68.a6, 686A

E2 68B5E5 68 BJ25 ~--
COCOlB

The following patch will prevent memory clear in micro Concurrent Pascal:

Location

1003

1060

Data

1060 address of patch (can be any

ED 6867 6865 6866686A

E2 68B5 ES 68B7 25

COCOlB

suitable location)

CONT

USING 180~ MICRO PASCAL

In order to use 11304 micro Pascal, the progra'ilmer must set up a

branch table and a parameter area starting at location 0000 (hex).

Programmer defined external machine language subroutines may follow this

area or the number of built-in subroutines may be extended. Actual Pascal

P-code fol.lows the built-i.n subroutine address table.

Page 00 branch table and parameter area:

ADDRESS

0000

0002

0005

0008

OOOB

OOOE

OOOF

0011

0013

0015

0017

DATA

7100

cocooo
EEDFOO

COC079

COC6BB

Cl

0000

COMMENT

Disable interrupts

Long branch to pre-initialization

Post-initialization (could be !or~ branch)

Long branch to software error continua ti.on

Long branch to external interrupt

P-code subrouting adress table page

Bottom of RAM address

Top of RAM address

Size of RAM .(RA!-f Top-RAM bottom +l)

P-code starting address

Reserved for micro Concurrent Pascal extension
progr81'1

The programmer defines the location of RAM working storage and the start-

ing P-r:ode address. All other fields should re.am in es specified above unless

special requirements must be met. The branch table is used by the optional

mCP ROM to link with the 1804 micro Pascal interpreter.

The addresses of bottom and top of RA...'1 may be adjusted so that memory

space is available for working storage by external or built-in roaching language

and interrupt subroutines. Only the area defined between RA..~ bottom and ROM

top will be cleared to zero.

TI1e application proE;rarn P--co<le.s output by the cross-compiler arc re

locatable anywhere in manory. The starting P-code base address is specified

in the parameter <trea, locc.tion 0015 hcxadec:imal.

A PP~;V 0 l x Pr co rJ f

Page 00 must al so cont a in the built-in machine language subroutine

address tabJ_~:

ADDRESS SUBROUTINE LOCATION SUBROUTINE NA.~E SELECTOR NUMBER ---
0019

OOlB

OOlD

OOlF

0021

0023

0025

0027

0029

002B

002D

002F

0031

0033

0035

0037

0039

003B

003D

003F

0041

0043

0045

0047

0049

C04B

004D

004F

------- -----

C558

C55C

C560

C564

C600

C605

C277

C60A

C610

C20E

C212

C22E

C231

C234

C237

C23A

C25"1

C25A

C2B5

C2B8

C2BB

CCDB

COlJE

C2CE

COE7

COEl

CO:t:ti

C275

The built-in machine

Test external flag i (EFl)

Test external flag 2 (EF2)

Test external flag 3 (EF3)

Test external flag 4 (EF4)

Set DMA register {RO) to address

Get DMA register (RO) address

Set INTERRUPT register (P..l) address

Set Q flag on or off

Test Q flag

Load counter

Get counter

Stop counter

Decrement Coun~cr

Start timer

Start counter mode 1

Start counter mode 2

Start pulse mode 1

Start pulse mode 2

Enable toggle Q flag

External interrupt enable

External interrupt disable

Counter interrupt enable

Counter interrupt disable

Set RAM timer word

Get RAM tiroer word

Enable interrupts

Disable interrupts

Wait for interrupt

language subroutines reside in the 1804 ROM.

Additional built-in subroutines may be coded by extending the list of sub-

~ l
3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27 J
28

1802/

1804

built-ii

subr.

1804

buil t-i1

subr..

APPf ,V Dl X CONT.

routine addresses. Up to a total of 128 built-in subroutine addresses may

exist. If a particular built-in subroutine entry is not used, it may be

replaced by another subroutine address •

• • ,.._ •# -- - -·-- ·':'"'· -·-- ----,,.---

APPEAJDIX A CDDT.

USING MCP EXTENSION ROM

With the nicro Co~currcnt Pascal extension ROM installed, the programmer

must set up a branch table and parameter area starting at location 1000 (hex).

Programmer defined external machine language subroutines may follow this area

or the number of built-in subroutines may be exter~ed. Actual Pascal P-code

follows the built-in subroutine address table. The parameters in page 10

(hex) have the same relative position as parameters specified in page 00

for micro Pascal.

Page 10 (hexadecimal) branch table and parameter area:

ADDRESS

1000

1002

1005

1008

lOOB

lOOE

lOOF

1011

1013

1015

1017

DATA

7100

COC004

EEDFOO

C00043

C00304

01

0040

COMMENT

Disable interrupts

Long branch to pre-initialization

Post-initialization (could be long branch)

Long branch to software error continuation

Long branch to interrupt subroutine

P-code ~ubroutine address table page

Bottom of RAH address

Top of RAM address

Size of RAM (RAM top - RAJ1 bottom +l)

P-code starting address

DOIO size and stack m.argin

The programmer defines the location of RAM working storage and the stari:ing

P-code address. All other fields should remain as specified above unless

special requirements must be met. Adding initialization code, changing the

P-code branch table, etc., can be made by altering the branch and para.'lleter

table entries.

The addresses of bottom and top of RAM tr.ay be adjusted so lha t me.-nory

space is available for working storage by external or built-in machine language

and interrupt subroutines. Only the are:a defined between RAM bottom and top

will be cleared to zero.

---..,-. ~-· .. __ ,,~-..;,-·•"M"'O::- --- .,_ .. -· ~- .. ·-"'I'< ,_ ___ ,_. -~,-~":" - --:---._,,_._,.._..., -"""' ,,---::->~ .._..,_,...,,. __ .. ~-........... -~.,.........-,..__..., _ _.,,, __ : ,,,,_'"'"'I!'"'" ,. ~-LE£""". .Ji2 •. - v 1"'

Page 10 must also contain the built-in machine language subroutine

address table:

ADDRESS SUBROUTINE LOCATION SUBROUTINE NAME SELECTOR NUMBER

1019 C558 'l'est external flag 1 (EFl)

101B C55C Test external flag 2 (EF2)

lOlD C560 Test external flag 3 (EF3)

lOlF C564 Test external flag 4 (EF4)

1021 C600 Set DMA register R(O) to address

1023 C605 Get DMA register R(O) address

1025 022E Change addreBs of interrupt table

1027 C60A Set Q flag on or off

1029 C610 Test Q flag

102B C20E Load counter

102D C212 Get counter

102F C22E Stop counter

1031 C231 Decrement counter

1033 C234 Start timer

1035 C237 Start counter mode 1

1037 C23A Start counter mode 2

1039 C257 Start pulse mode 1 ...
103B C25A Start pulse mode 2

103D C2B5 Enable toggle Q flag

103r C2B8 Exte.rnal interrupt enable

1041 C2BB External interrupt disable

1043 CODB Counter interrupt enable

:1045 CODE Counter interrupt disable

1047 C2CE Set RAM timer word

1049 COE7 Get Rf.,.._~ timer -word

Note: 1. Selector nu,-nber 7 is different from the micro Pascal built-in
subroutine.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

2. Tbe lqst three built-in subroutines in micro Pascal are omitted
here because they do not apply to micro Concurrent Pascal.

n::BuccrNG rJsI~G u~c: T'IRECTI"t.TE

For debugging using the LINE directive, the line number of the statement

being executed can be found at RA.~ bottom+ 4 (word). It may also be found at

the address found in register 11, the LOCAL variable pointer. The line

number is saved on the stack during a procedure or function call. However,

it is not restored to the LIN~ variable in RA..~ (RA.~ botto~ + 4) by micro

Pascal. Micro Concurrent Pascal does restore the LINE number.
. l

DEBUGGI~G I~:'OR.'·!ATIO~;

When a saf tware et'iior occurs the error code will be stored at RA.~

bottom + 7 (byte) and the P-code program counter (QPTR) will be stored at

RA.-i.r bottom + 8 (word).

BUILT-IN ASSE-1BLY LASGUAGE RDU't"INFS

Built-in assembly language routines a~~ ~rovided for common machine

oriented functions. These include subroutines for the counter/timer and

special instructions.

All built-in e.~ternal routine declaration examples given belov assume

the following type declarations:

TYPE BUILT_IN_SU'BR • 1. •• 28;

INT_BYTE • 0 •.• 255;

1. TEST EF'l (1)

Assembly l~nguage function tests external flag 1 (EFl) and

returns either 0 ot 1 (boolean).

Routine declaration:

'FUNCTION TEST EFl (SELECTOR: BU!LT_I!i_SlTBR): BOOLEA..J.{;

EXTERNAL 'TESTEFl ' ;

2. TEST EF2 (2)

Assembly language function tests external flag 2 (EF2) and

returns either 0 or 1 (boolean).

Routine declaration:

FWCTim~ TEST EF2 (SELECTOR: BU!LT_IN_S~13R): ,BOOLEA.~;

EXTER..~AL 'TESTEF2';

3. TEST EF3 (3)

Assembly language function tests external flag 3 (EF3) and

returns either 0 or 1 (boolean).

Routine Declaration:

FUNCTIO~ TEST EF3 (SELECTOR: BL"ILT_IN_SUBR): BOOLEAi.'{;

EXTER..~AL 'TESTEF3' ;

4. TEST EF4 (4)

Assembly language function tests external flag 4 (EF4) and

returns with 0 or 1 (boolean)

Routine delcaration:

FUNCTION TEST_ EF4 (SELECTOR: BUILT_IN_SUBR) : BOOLE.A:.'{;

EXTEIDIAL 'TESTEF 4 ' ;

5. DMA SET (address to set RO, 5).

Assembly language procedure sets the DMA register R(O) to

the address given by the first parameter.

Routine declaration:

PROCEDURE D~ SET (RO_ADDRESS: ADDRESS; SELECTOR: BUILT_IN_SUBR);

EXTER.':AL 'mfASET';

6. DMA ASK (6)

Assembly language function returns the address value of

the DMA register R(O).

Routine declaration:

FL'NCTIO!: DHA_ASK (SELECTOR: BUILT_I~_SUBR): ADDRESS;

EXTER.'L\L D!".AA.SK' ;

7A. I~TERRtT!>T (interrupt s.ubroutine address to set Rl, 7)

Micro Pascal:

Assembly language procedure sets the interrupt register P.(l)

to the address of the interrupt subroutine given by the

first parameter.

Routine declaration:

PROCEDURE INTERRUPT (I!{TERRUPT_ADR: ADDRESS; SELECTOR: BUILT_IN_SUBR);

EXTER.~AL· 'INTCII';

7B. SWITCH INTTBLS (address of interrupt table, 7)

Micro Concurrent Pascal:

Assembly language procedure changes the address of the interrupt

table. Procedure alters RAM bottom + 16 (word) with new

interrupt table addresses.

PROCEDURE SWITCH I~TTBLS (NEW_I~TTBL_ADR: ADDRESS; SELECTOR:

BUILT_IN_SUBR); EXTERNAL '!NTCH';

..

ltPP£11J D l)C B

8. SET_Q_FLAG (Q flag val~e, 8)

Assembly language procedure sets the Q flag to either 0 or 1

given by the first parameter.

Routine declaration:

PROCEDURE SET_Q_FLAG (Q_FLAG: BOOLEA..t.{; SELECTOR:

BUILT_IN_Sl:JBR); EXT::RNAL ~SETQ';

· 9. GET_Q_FLAG (9)

Assembly language function tests the Q flag and returns

either 0 or 1 (boolean).

Routine declaration:

FfillCTION GET_Q_FLAG (SELECTOR: BUILT_IN_St'BR): BOOLEA.'i;

EXTER..~AL 'GETQ I ;

10. LOAD COu~TER (count value, 10)

Assembly language procedure sets counter to the counter value

given by the first parameter. The value ranges from 0 to

255. The procedure executes the LDC instruct ion.

Routine declaration:

PROCEDURE LOAD COL"XTER (COtrnT: INT_ BYTE; SELECTOR:

BUILT_IN_SUBR); EXTERNAL 'LDC';

11. GET COUNTER (11)

Assembly language function returns the value of the counter.

This function executes the GEC instruction.

Routine declaration:

FU'NCTION GET_ COUNTER (SELECTOR: BUILT_IN_SUBR): INTEGER;

EXTERNAL 'GEC I ;

A-PP END l X 5 CONT.

. 12. STOP COUNTER (0, 12)

Assembly language procedure stop the counter. The first

parameter is a duI?:my parameter. This procedure executes the

STPC instruction.

Routine declaration:

PROCEDURE STOP COl.'NTER (Dl.~: INTEGER; SELECTOR:

BUILT_IN_SUBR); EXTERNAL 'STPC';

13. DECREME!;T COL'XTER (0, 13)

Assembly language procedure decrements the counter by L The

first parameter is a dummy parameter. This procedure executes

the DTC instruction.

Routine declaration:

PROCEDl.'RE DECREXEXT_COt";tTER (Dt1'~: I!~TEGER; S'SLECTOR:

BUILT_IN_SUBR); EXTEP~AL 'DTC';

14. START TI:rER (0, 14)

Assetibly language procedure sets the ti:ner mode and starts

the timer. The first parameter is a dummy parameter. 'Ibis

procedure executes the STM instruction.

Routine declaration:

PROCEDt;1IB START TI~R (DI..w.Y: INTEGEli.; SELECTOR: BUILT_IN_SUBR);

EXTERNAL I STI1';

15. STA.RT COUNTER MODEL (0, 15)

Assembly language procedure sets counter mode 1 and starts the

counter. The first parameter is a dummy parameter. This

procedure executed the SCH instruction.

Routine declaration:

PROCEDURE START_COL'NTEP;_~tODEl (Dm~fY: INGETER; SELECTOR:

BUILT IN SUBR); EXTER.'IAL son'. - - '

...

A PPE.tJ D l i-. B c otUT·

16. START COUNTER }-!0DE2 (0, 16)

Assembly language procedure sets counter mode 2 and starts

the counter. The first parameter is a dummy paraoeter. This

procedure executes the SC?-!2 instruction.

Routine declaration:

PROCEDURE START COUNTER ~ODE2 (Dml?·f"f: INTEGER; SELECTOR:

BUILT_IN_suBR); EXTER.."iAL 1·sc12':

17. START PULSE ~OD~l (C, 17)

Assecbly language procedure sets pulse mode 1 and starts

counter. The first para~eter is a dummy parameter. This

procedure executed SP~ instruction.

Routine declaration:

PROCEDURE START PULSE ~!ODEl (DT.:~·lMY: INTEG!'.:R; SEL "'.:".:TO?.~

BUILT IN Slr"SR); EXTER1;AL 'SP:'U';

18. START PULSE MODE 2 (0, 18)

Assembly language procedure sets pulse mode 2 and starts

counter. The first parameter is a dummy parameter. This

procedure executes the SP!2 instruction.

Routine declaration:

PROCEDURE STAP.T_PULSE_~ODE2 (Du"'M}fY: INTEGER; SELECTOR:

BUILT_IN_SUBR); EXTER."{AL 'SP~';

19. ENABLE_TOGGLE_Q (0, 19)

Assembly language procedure sets the counter to toggle Q

whenever the counter decrements from 01 to its nex': value. The

first parameter is a dui:lmy parameter. This procedure executes

the ETQ instruction.

Routine declaration:

PROCEDURE ENABLE_TOGGLE_Q (DL,.HHY: INTEGER; SELECTOR:

BUILT_IN_SUBR); EXTER..~AL 'ETQ';

., ...

20. EY.T INTERRUPT E~ABLE (0, 20)

Assembly language procedure enables external interrupts. The

first parameter is a dummy parameter. This procedure executes

the XIE instruction.

Routine declaration:

PROCEDURE EXT_INTERRUPT_ENABLE (DUM!1Y: INTEGER; SELECTOR:

BUlLT_IN _StTBR); EXTE~~AL 'Y.IE';

21. EXT !!i!ERRUPT DISABLE (0, 21)

Assembly language procedure disables external interrupts. The

first parar:ieter is a du::imy parameter. This procedure executes

the XID instruction.

Routine declaration:

PROCEDt~..E EXT I~TERRt'PT_DISABLE (Dt~~IY: INTEGER; SELECTOR:

BUILT_IN_SUBR); EXTEP~L 'XID';

22. CNT I?i"TERRUPT E~ABLE (0, 22)

Assembly language prodecure enables counter interrupts. The

first paraoeter is a dummy parameter. This procedure executes

the CIE instruction.

Routine declaration:

PROCEDURE en INTERRUPT_ E~TABLE (D~: !~"'TEGER; SELECTOR:

BUlLT_IN_ST..IBR); EXTEF~AL I CIE';

23. C~ !NTERRt"PT DISABLE (0, 23)

Assembly language procedure disables counter interrupts. The

first para~eter is a dummy parameter. This prodecure executes

the CID instruction.

Routine declaration:

PROCEDURE CH INTERRGPT_DISABLE (DUMMY: INTEGER; SELECTOR:

BUILT_IN_SUBR); EXTEP.NAL 'CID';

' .

A- p pE.,,v Pt X l3 c_ o{) T.

24. SET TIME (time value, 24)

Assembly language procedure sets the timer word to the time

value given by the first parameter. The timer word is decremented

once whenever the timer/counter interrupt subroutine is executed

until the timer word reaches zero.

Routine declatation:

PROCEDURE SET TD!E (TI~: INTEGER; SELECTOR: BUILT_!N_SUBR);

EXTE:R..~AL I SETI!1E I j

25. GET TIME (25)

Assembly language function returns the current value of the

timer word.

Routine declaration:

FUNCTION GET_TDrE (SELECTOR: BUILT IN SUBR) : - - INTEGER;

EXTEPSAL 'GETIME ' ;

25. ENABLE INTERRUPTS (0, 26)

Assembly language procedure enables interrupts. The first

parameter is a dummy parameter. This procedure executes the

RET instruction.

Routine declaration:

PROCEDURE ENABLE_ INTERRUPTS (DID!MY: INTEGER; SELECTOR:

BUILT_IN_SUBR); EXTER.~AL '~B';

27. DISABLE !~TERRUPTS (0, 27)

Assembly language procedure disables interrupts. The first

parameter is a dUI!'.my parameter. This procedure executes the

DIS instruction.

Routine declaration:

PROCEDURE DISABLE_INTERRL~TS (Dl1}1XY: INTEGER; SELECTOR:

BUILT_IN_SUBR); EY.TER!iAL 'DIS';

..

.. ·' .· ..

COtV[

28. IDLE (0, 28)

Assembly language procedure waits for interrupts. The first

parameter is a dunnny parameter. This procedure executes the

IDL instruction.

Routine declaration:

PROCEDURE IDLE (DUMMY: INTEGER; SELECTOR: BUILT_IN_SUBR);

EXTERN AL I IDL I ;

.. .

HANDLING INTERRL'PTS

Interrupts can be enabled or disabled at an)'· ::-r.,,,P. at the option of the

programmer. Interrupts do not affect P-code imple:ientation. Interrupts

are not enabled/disabled bet-ween P-code execution. The interrupt routine

must save and restore the D register and DF flag on the interrupt stack (R2),

along with any registers used.

Because concurrency is omitted from the 1804 ROM, external interrupts

must be handled by the_prograrnr:ier. The RO~ contains a built-in interrupt

subroutine for processing counter interrupts.

The built-in counter interrupt subroutine decrer:::.ents a ti=ler word in

RA!-! if it is non-zero. Two built-in assembly language subroutines let the

progra.ru:ler read and wL'ite this timer word.

The interrupt subroutine branches to a fixed location in the user P-code

ROM. This linkage is provided for handling external hardware interrupts.

Hardware interrupts ~ust be latched. External interrupts have higher priority

than counter interrupts.

(OAJI -
USER DEFINED INTERRUPT SUBROUTINE

A User interrupt handling subroutine may replace the buil t-i11 counter/

timer subroutine by setting register 1 to the interrupt subroutine address.

This may be accomplished by calling the built-in subroutine selector number

7 (interrupt change). The interrupt subroutine must save DF, D, and any

registers used on the R2 stack (R2 must first be decremented before storing

data). lbe counter/timer interrupt subroutine may serve as a useful model.

MCF COUNTER/TIMER U.."TERRUPT TABLE ENTRY

With .the mCP extension ROM installed, timer/counter interrupt is

specified in the interrupt table with a group number of zero and an EF flag

number of zero.

lhe Micro Concurrent Pascal User's Guide describes how to set up the

interrupt table.

MCP com:TER/TIMER PRESCALING

An 1804 timer/counter prescaling feature is available in the interrupt

subroutine. All 1804 timer/counter interrupts are scaled by the value in

t~e 1804 1 Til1ER ~~rd in RAM. The TIMER word must be set to the initial

presc;ile value minus 1 in each byte. For example, timer interrupts occuring

at l/60th of a second can be scaled to every second by placir.g 3B3B in the

TIMER word (3BH=59). The high order byte is the initial prescale value and

the low order byte is a prescale variable. The SET RAM tuner word (selector

number 24) built-in subroutine initializes the timer word.

NormDlly the timer word is zero so that no prescaling takes place.

.· . . .

co nJT

EXTENDING THE ~·uxBER OF ·i:~tERS

Extra cotmter/ti.mers may be added to the built-in interrupt routine by

using the link for external interrupts. Use the external interrupt link to

branch to a BCI instruction that checks for counter/ti.mer interrupt. If this

is a counter/tll:ier interrupt request decrement each storage word containing

the timer. Finally, branch to location C6CO (PT:D1ER) to reenter the interrupt

subroutine. Machine language subroutines would also have to be added to

read and write the extra timer words. These subroutines must use RLXA and

RSXD instructions to re~d and write ti.mer words to prevent the interrupt

prograI:J. from updating til:ler ~crds while the main program accesses the tioer

words.

kPP£AJ0tX

CDOS Micro NET Executive
Copyright CC) 1981 Compuserve Incorporated
·'"C

0ser ID: 70161.112
Password: XXX1-XJO<X

CompuServe Information Service

13:15 EDT Friday 24-Sep-82

01<

R FILTRN
CompuServe File Transfer Program

Select direction:

D

1 if to your RCA COSMAC DEVELOPMENT SYSTEM IV
2 if to the PDP-10

? 2

Enter the PDP-10 file specification: PASCAL.SRC

Please give me a filespec for CDOS: PASCAL.SRC:1

INITIALIZING PROTOCOL

UPLOAD STARTING

*** File transfer completed! ***

01<
R MCP

RCA/Enertec Pascal Compiler

Name of your source file: PASCAL.SRC

OK

-compiler passes-

OK

.-C=~------./p.. P..HE'f.

R FILTRN
CompuServe File Transfer Program

Select direction:
1 if to your RCA COSMAC DEVELOPMENT SYSTEM IV
2 if to the PDP-10

?...L

Enter the PDP-10 file specification: PASCAL.HEX

Please give me a filespec for CDOS: PASCAL.HEX:l

INITIALIZING PROTOCOL

DOWNLOAD STARTING

*** File transfer completed! ***

OK

MllALL£LUO
INTEllf'ACE

"A•l'S 40
IELA·I' cs

Nl·I' AOllO
Nt·I' AOlll

OIO·P
Oll·P u:s m:: COP
1114-P 1151

DM-P
1111-P
Ol7·P

CLEAll•N
TATT lllT A•N

INT l·N 11IT1
PZ·t·lllO't'-P
1'2·7· ISTB·P
1'2·5· 10· P
l'Z-ll-11-"

+Y +v

LK43

Pl-IC ~ J Ef4·NCPZ·Z41

" "

+V
MllO·N
TPl·P

AllOY·P· 1'2·29
ASTl·P 1'2·27
AOO·P P2·25
AO I ·I' P2·2S
A02·P 1'2·21
AOll·I' "2· It
A04·P "2-17
A05·P l'Z-15
AOl·I' "2· 13
A07·P PZ· 11
17·1' l'Z·IZ
H-P l'Z•IO
15-P l'Z· I
14-P l'Z·I .,. .. 1'2•4
12·1' l'Z· I

ttCS•Sl4H

Pl-'l',Zl--t------+V 15VOLTSICP2·301
Pl· II • 5Vl-15Vll'Z·S21

Cl

DMAI·N Pl·I
OMAo-N P1·2
I.NT·N P1·4
MWll·N Pl·W
TPA·P Pl·A
TPl·P Pl·I
A7·1' 1'1-V
Al·P l'l·U
A5·P Pt-T
U.P l'l·S
A:S·P 1'1·11
AZ·I' Pl·P
Al•P l'l·N
AO•P Pl·M
E"·N PHT,P2·5'
EFZ•N 1'1-18,PZ-lll
EF')-N l'Ht,l'Z·ZI
El'+N

tlCl•Sl4 .. lll

' EF4·N-o

llCl·SIOI

+v

CLUll·N

SElllAL I/O
INTERFACE

CDP18S601

t2CS·SIOI

1112
JI ·7 1 CU~WT J:Jl·ll I OUT

J2·1

J2·IO

JZ·9

+12VI+15V R5 JZ·7

.--'V'.t\r-- J2·1

•
-5V/·15Y

RSZSZC DATA
OUT J 2·:S

9ZCS•Sl417

EIA
..-.1---..------.--+'"vv~J2•Z DATA

IN

llOTE ·
WIRE JUMPER W JI TO IE INSTALLED
FOR llS2:S2C OPERATION. USt: HOLES
MARKED C5

Logic diagram of Mlcroboard Computer CDP1BS601 • CPU and Interface portions.

'

CDP18S601

i Iii i !:!
I f I I

~c

~~
DT•P

ffff,
D&·P

~ ~ ~ 'f' 05-P ~ ..
D+-P

DO

.. ..

Logic diagram of Microboard Computer CDP18S601 - memory portions.

tlCL•l14llllll

. .

*PE000 (execute program)

MCDS Micro NET Executive

Copyright (C) 1981 Compuserve, Inc.

(Dial up_ the Micro Net telephone number, wait for the modem ready signal)

tC (control C)

User lD: 70007,530 return

Password:. MCDS; APR, return

Compuserve Information Service

10: 20 EDT Monday, 03-May-82

OK

(Enter and/or Edit a MCP source program)

R FILGE return

*!0601.MCP return

New file 10601.MCP created-ready

File I0601.MCP ready

(*$ PERMIT, HIGHBYTE, LIST-SHORT $*)

(run file genera tor)

(enter file name)

(new file response)

(old file response)

(F.dit MCP source file)

(*Turn on output port using switches from input*)

CONST

APORT = ADR (#0804);

BPORT = ADR (#OBOE);

CNTRL = ADR (#0802);

VAR

X : Integer;

BEGIN

OUT (fl4B, CNTRL)

OUT {113, CNTRL)

CYCLE

X : •INN (BPORT);

OUT (X, APORT)

END.

/EXIT

OK

(*set A OU tpu t *)

(*set B output*)

(*output*)

(*input*)

(*control*)

R MCP (execute compiler)

RCA/Enertec Pascal Computer

Name of your source file: 10601.MCP return

OK

-compiler passes-

OK

DIR return

10601.LST

10601.DBG

10601.HEX

!0601.MCP

R FlLTRN

Compuserve File Transfer Program

Select direction:

R KHEX
(display directory)

(run file transfer to perform down load)

1. if RCA COSMAC Microboard Development System (down load) to your ,...
2. if to the PDP - 10 (up load)

? 1 return

Enter the PDP-10 file specification: !0601.HEX

Please give me a f ilespace for MCDS; !. (tape drive 9)

INITIALIZING PROTOCOL

Rewind, then hit any key return .

Depress Play/Record aJJd any key return

DOWNLOAD STARTING

*** File transfer completed ***
OK

tX

* R

TAPE I 0 return

LOADING

*R

(down load)

(control X enters MCDS utility monitor
program)

(read tape for down loaded program)

(read tape for Pascal parameter table)

HANDLI~G ~OFT.JARE ERRORS

The micro Pascal interpreter halts for the following software errors:

BAD P-CODE

MEMORY OVERFLOW

RANGE ERROR

DIVIDE BY ZERO

The micro Pascal interDreter continues Drocessin2 P-codes for the followin2

software error:

ARITHMETIC OVERFLOW .

(use PEEK to access software

error code and POKE to reset

error code to zero)

To halt the interpreter on arithmetic overfloY instead of continuing, change·

the branch table location 0008H to COCbf&. Arithmetic overflow occurs in

ADD, Sl131i1ACT, NEGATE, AES, DEC, INC, COPY BYTE and MULTIPLY integer P-code

subroutines. The stack contains the overflow result and may be used i..~ sub

sequent P-code operations.

Micro Concurrent Pascal handles errors differently from micro Pascal.

If the software error process e..~ists, micro Concurrent Pascal will execute

the error process when an error occurs, otherwise the program halts.

MCP COMPILER DIRECTIVES

The following directives must be defined in the micro Pascal source

program:

RIGHBYTE

PERMIT

For exa:nple:

(determines HI-LO byte order for P-code generation)

(permits calls to INN, OUT, PEEK, POKE)

(*$ HIGHBYTE, PER..'1!T $*)

should be the first line of the progra:n.

, -

APPEAJDlX :t-

USER DEFINED BU:'.:LT- I~ SUBROUTINE LINY.AGE

Build-in subroutines ~~e register 8 as the program counter with X set to

register 14. The first parameter is the integer value for indexing into the

subroutine address table. This value is popped off the stack by the inter

preter before entry into the subroutine. Register 5 contains the second

parameter on entry to the subroutine. Built-in assembly language procedures

must have at least two formal parameters while functions must have at least

one formal parameter. Register 14 points to the top of stack most significant

byte on entry; X is set to register 14.

On exit from the subroutine X must be set to register 14. To return

use the instruction set P to register 15.

Registers that may be used without saving and restoring their constants

are R4, RS? and R7. All others must be saved and restored using the R2 stack.

Register 2 must be decrenented before storing registers.

The subroutine linkage technique does not use standard call/return because

it references a table of addresses and is faster than SCAL/SRET instructions.

An example of a built-in subroutine is GET_Q_FLAG:

•• X is 14; P is 8

ASKQ DEC 14 •• reserve stack space

LDI 0
LSNQ •• test Q flag

LDI 1

STXD •• store least significant byte

LDI 0
STR 14 •• store most significant byte

SEP 15 •• return to interpreter

, .· l

cOAf(

USER-DEFINED EXTERNAL ASSDffiLY LANGUAGE SUBROUTINES

A selector equal to 0 identifies a user-defined asse!!:bly langugage routine.

The user provides the address of the assembly language routine in the call.

Tile interpreter pops it from the stack and uses the standard call and return

technique to execute the routine. Register 6 contains the address for

returning to the interpreter. Register 3 is the program counter used to

enter the assembly language routine. Register 14 is the data parameter pointer

to the first byte of any parameters before e.~ecution of the routine. After

execution the stack pointer register 14 points to the top of the stack entry.

Register 2 is the system stack used to save registers. It is used to return

control to the interpreter using the standard return instruction.

Tile user is responsible for setting register 14 to point beyor~ all

parameters. Registers available to run assembly language routines are 4, 5, 7,

and 8.

Registers 1 and 13 must not be altered at any t:ime if interrupts are

enabled. Other registers oay be used if restored to their original valce.

Register 2 must be decre:iented before storing registers.

.

c.oA)-l

The foll~ing model and example describes the construction of an external

assembly language subroutine:

SUBR SE<

l DEC
optional RSXD

SEX

RLXA

DEC

RSXD

INC

SEX

optional { INC
restore

RXLA registers
SRET

R2

R2

register

Rl4

register

Rl4

register

Rl4

R2

R2

register

R6

•• set X to system stack

•• save register on R2 stack

•• set X to parameter st:ack

•• get data from stack

•• store data on stack

•• adjust stack pointer to

point to most significant

~.-, byte ·-- ····-- - - -- ·---·-· --- --

•• adjust stack pointer

•• restore register saved

•• standard return

//

\

