FM Front-end IC for Car Radio

Overview

The AN7280S is an FM front-end IC designed for DTS except RF amp. of car radio. It features built-in local oscillation frequency buffer output, PIN diode driver for antenna damping and SSC (search stop control).

Features

- High sensitivity, high S/N ratio
- Good IM characteristics at strong input
- Available for two loop AGC (keyed AGC)
- Pre IF amp. gain variable
- PIN diode driver (ADX) built-in

Block Diagram

Parameter Symbol Rating Unit Supply Voltage 9.2 V_{CC} v Supply Current Icc 50 mA Power Dissipation \mathbf{P}_{D} 460 mW Operating Ambient Temperature T_{opr} $-40 \sim +85$ °C <u>-55</u> ~ + 150 Storage Temperature T_{stg} °C

■ Absolute Maximum Ratings (Ta=25°C)

■ Recommended Operating Range (Ta=25°C)

Parameter	Symbol	Range
Operating Supply Voltage Range	V _{CC}	6.8V ~ 9.2V

■ Electrical Characteristics (Ta=25°C)

Parameter	Symbol	Condition	min.	typ.	max.	Unit
S/N Ratio	N _{OUT}	V_{CC} = 8V, V_{in} =17dBµNo modulation However, S= output at 400Hz, 30% modulation	22	30		dB
Local Oscillation Level	V _{osc}	V _{CC} = 8V, f _{OSC} = 108.7MHz Measured by Pin4, No signal input	219	384	435	mV
IF Output Level	V _{OUT}	$V_{CC}=8V, V_{in}=51dB\mu$	41	58	82	mV
AGC Level (L)	VAGC (L)	$V_{CC}=8V, V_{in}=67dB\mu$		0.05	0.5	v
AGC Level (H)	VAGC (H)	$V_{CC}=8V, V_{in}=53dB\mu$	6	6.5		v

Characteristics Curve

Application Circuit

- r III		1	
Pin No.	Pin Name	Description	Equivalent Circuit
1	OSC Emitter	Local oscillation transistor emitter pin	
2	OSC Base	Local oscillation transistor base pin	
3	OSC By-pass	V _{ref} by-pass pin for mixer,OSC buffer,OSC section	5V
4	OSC Buffer Output	Pin for output OSC signal to pre-scaler	Ο V _{ref}
5	Level Detection Output	AGC signal output pin for RF-Amp. secondary gate	V _{cc} ↓.70µА 5 тт
6	AGC– Amp. Gain Adjustment	Pin for adjusting AGC Amp. gain by external resistance	6 5.6kΩ 111 111 111 111 111 111 111 1
7	Control Signal Input	Pin for adjusting AGC-Amp. gain through input of control signal from IF section	
8	GND		
9	SSC Input	Pin for adjusting AGC-Amp. gain through input of control signal from microcomputer	V _{ref} 70kΩ 39kΩ 111
10	Vcc		

Pin	Descriptions (Cont.)			
Pin No.	Pin Name	Description	Equivalent Circuit	
11	IF-Amp.	IF-Amp. output pin		
12	IF-Amp. By-pass	IF-Amp. by-pass pin		
14	IF-Amp. Input	IF-Amp. input pin	$\begin{array}{c c} & & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$	
13	IF-Amp. Gain Adjustment	Pin for adjusting IF-Amp. gain by external resistance		
15	- Mix. Output	Mixer output pin		
17	Mix. By-pass	Mixer by-pass pin		
18	Mix. Input	Mixer input pin		
19	ADX Output	PIN diode driver output pin Determine maximum current to PIN diode by Pin19 external resistance value.	v _{cc}	
20	GND	Oscillator GND		

■ Pin Descriptions (Cont.)

Operational Description

Loop AGC

The AN7280S uses 2Loop AGC for AGC circuit. 2Loop AGC controls AGC output by using mixer output (IFT first side) signal and FM–IF control voltage (level meter output), which is a very favorable system for disturbance characteristics, etc.

- AGC start point (Mixer input level at $V_{AGC} < 3V$) changes in proportion to Pin6 external resistance (following R_1), Pin 7 applied voltage (Determine IF control voltage by R_2 , R_3 resistance division) SSC ON/OFF
- · Variable width at R $_{1}$ 28dB (however, $V_{7} \ge 3V$, $V_{9} = 0V$)
- · Variable width at R_740dB (however, $R_1 = \infty$, $V_9 = 0V$)
- · Variable width at R_9 10dB (however, $R_1 = \infty$, $V_7 \ge 3V$)

• SSC

Change AGC start point by microcomputer control signal at seek/reception time.

Use at SSC ON $\cdots V_9 > 3.5V$

Use at SSC OFF······V₉<1.5V

* SSC is designed as precondition for switching operation at microcomputer control signal.

Request for your special attention and precautions in using the technical information and semiconductors described in this material

- (1) An export permit needs to be obtained from the competent authorities of the Japanese Government if any of the products or technologies described in this material and controlled under the "Foreign Exchange and Foreign Trade Law" is to be exported or taken out of Japan.
- (2) The technical information described in this material is limited to showing representative characteristics and applied circuit examples of the products. It does not constitute the warranting of industrial property, the granting of relative rights, or the granting of any license.
- (3) The products described in this material are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).

Consult our sales staff in advance for information on the following applications:

- Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
- Any applications other than the standard applications intended.
- (4) The products and product specifications described in this material are subject to change without notice for reasons of modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the guaranteed values, in particular those of maximum rating, the range of operating power supply voltage and heat radiation characteristics. Otherwise, we will not be liable for any defect which may arise later in your equipment. Even when the products are used within the guaranteed values, redundant design is recommended, so that such equipment may not violate relevant laws or regulations because of the function of our products.
- (6) When using products for which dry packing is required, observe the conditions (including shelf life and after-unpacking standby time) agreed upon when specification sheets are individually exchanged.
- (7) No part of this material may be reprinted or reproduced by any means without written permission from our company.

Please read the following notes before using the datasheets

- A. These materials are intended as a reference to assist customers with the selection of Panasonic semiconductor products best suited to their applications.
 Due to modification or other reasons, any information contained in this material, such as available product types, technical data, and so on, is subject to change without notice.
 Customers are advised to contact our semiconductor sales office and obtain the latest information before starting precise technical research and/or purchasing activities.
- B. Panasonic is endeavoring to continually improve the quality and reliability of these materials but there is always the possibility that further rectifications will be required in the future. Therefore, Panasonic will not assume any liability for any damages arising from any errors etc. that may appear in this material.
- C. These materials are solely intended for a customer's individual use. Therefore, without the prior written approval of Panasonic, any other use such as reproducing, selling, or distributing this material to a third party, via the Internet or in any other way, is prohibited.