

For Immediate Assistance, Contact Your Local Salesperson

SPECIFICATIONS

ELECTRICAL

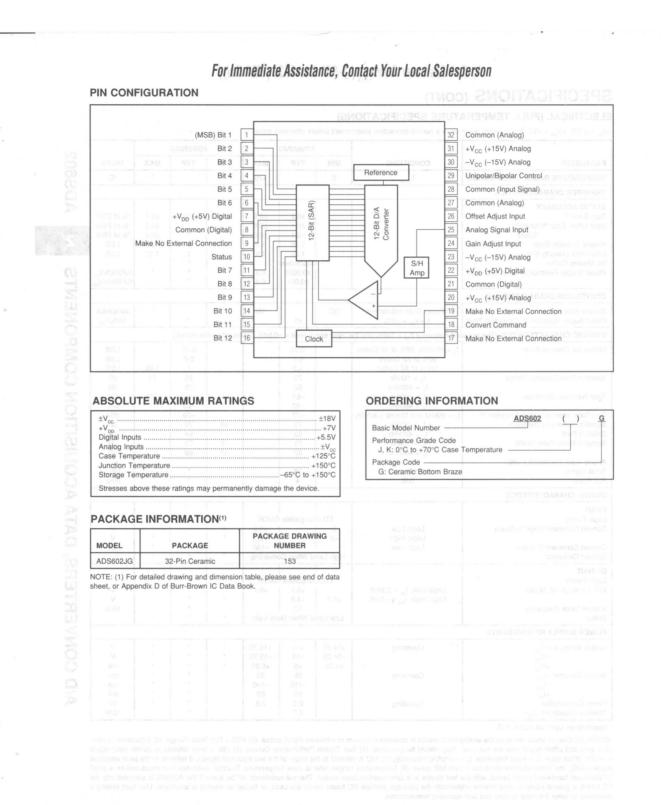
	BIL DE	ADS602JG			ADS602KG			-1 2:1 	
PARAMETER	CONDITIONS	MIN TYP		MAX	MIN TYP		MAX	UNITS	
RESOLUTION	(1943) S.	Sec. 2	133.37	12			•	Bits	
ANALOG CHARACTERISTICS	and the second	100	13.00						
INPUTS		2	18						
Voltage Ranges: Bipolar	Full Scale (FSR) (1, 2)	-5	1.20	+5			· •	V	
Unipolar	Full Scale (FSR) (1. 2)	0		+10				V	
Input Resistance			1			•		kΩ	
Input Capacitance			5	10		•	•	pF	
TRANSFER CHARACTERISTICS							1.000		
STATIC ACCURACY	- Campalina	1.1 18 /1	- 45 C	0.3-				1	
Gain Error ^(3, 4)	DUIDUIDE 7	MINI.	±0.2	±0.3		±0.1	±0.2	% of FSR	
Input Offset Error (3, 4): Unipolar			±0.1	±0.8			±0.4	% of FSR	
Bipolar	VMOD LAT	1216	±0.1	±0.6	110	AA	±0.4	% of FSR	
Integral Linearity Error	A DE STOR METER	100.82	1.2	1.5	Paul Prin	0.9	1.25	LSB	
Differential Linearity Error			1.2	1.5		0.9	1.25	LSB	
No Missing Codes		100000000000000000000000000000000000000	Guaranteed	Contraction of Contraction			1.20	LOD	
Power Supply Rejection of Offset and Gain	$A + V = \pm 10\%$		±0.0036	0.5				%FSR/%V	
Fower Supply Rejection of Onset and Gain	$\Delta \pm V_{cc} = \pm 10\%$		±0.0036 ±0.001	0.5				%FSR/%V	
N5	$\Delta \pm V_{DD} = \pm 10\%$		10.001	0.5		6-11	LIA	76F SHV 76 V	
CONVERSION CHARACTERISTICS					-		0.1100	1.10	
Sample Rate	Without User Adjustment	DC		1M	OBME	EARITY	VILL+WC	samples/s	
Power Supply Rejection of Conversion Time	$\Delta + V_{DD} = \pm 5\%$		±1		\$10.01	BATE	AMPLE	ns/%V _{DD}	
DYNAMIC CHARACTERISTICS (The samp	ling frequency [f] = 1MHz and the	e input siar	nal level ≈ -	0.5dB. unle	ss otherwis	e stated.)			
Differential Linearity Error ⁽⁵⁾	$f_c = 480$ kHz, 68% of All Codes	I	0.35	1+ 01 V	0.7902	0.25	1000	LSB	
Differential Lifearity Endron ATMEMA	99% of All Codes		0.35	M: Con	T2V2	0.25	a issue	LSB	
	100% of All Codes		1.2			0.9	1.25	LSB	
Spurious Free Dynamic Range			-74	91100	Refer	-86	-76	dB	
Spundus Free Dynamic Range	$f_c = 10 \text{kHz}$		-68	0.0000	9.910	-73	-70	dB	
Total Harmonic Distortion(6)			-79	- norman	1.11.01.01	-83	-75	dBc	
Total Harmonic Distortion® 2835Y1	$f_c = 10 kHz$		-79						
Two-Tone Intermodulation Distortion (6, 7)	$f_c = 480 \text{kHz}$		-70		3.4.1	-72	-70	dBc	
	$f_c = 90$ kHz and 110kHz (-6.5dB)				70	70	200	dBc	
Signal-to-Noise and Distortion	$f_c = 10 kHz$		71		70 64	72		dB dB	
(SINAD) Ratio	$f_c = 480 \text{kHz}$	-smi	63	isses cous	64 70	67 73	7125602		
Signal-to-Noise Ratio (SNR)	$f_c = 10 \text{kHz}$ $f_c = 480 \text{kHz}$	nole/	71 67	ni diiw i	67	69	d-polse	dB	
Analog Input Bandwidth (-3dB)	$T_c = 480$ kHz	Talon	67	the motor	67	69		dB	
Small Signal			10	um uster	io pupini	• • • •	principlins	MHz	
Full Power	20dB Input	SCIVE	16	trissist	ip thin fi	to no du	w vacio	MHz	
	0dB Input	- os - qi	10 2014	D baaga	a high.	bc2 /06	nuosa p	MHZ	
DIGITAL CHARACTERISTICS	THE USER CAR SWIELD DE	mine	in time	<u>outurno</u>	longan	ain al lo	unih m		
HOD THROUGH ONE DIGITAL TOST TUPNI	and bijolar (xcz) akolid pre-		Liste and 1	analdan			1. 1		
Logic Family	level input.	TTL-	Compatible	CMOS	· · · · ·		•	Paron	
Convert Command Logic Voltages	Logic Low	0	inly testas	+0.8	0.20050	A solution	agp•.b	V	
	Logic High	+2		+V _{DD}	*	opratinte	thed sin	V	
Convert Command Currents	bring Logic Low monol			-150				μΑ	
Convert Command	for bipolar inputs	High Le	vel When C	onverting	w stoldi	neo*a s	VD\$601	11hg	
OUTPUT		2-pin	d 10 g 37	package	r and is	Distanti	io brist.	Logio -	
Logic Family	All digital input and out	TTL	Compatible	CMOS	ei ater	Jante 21	93 (P - 3)	0.000	
Bits 1 through 12, Status	Logic Low, I _{oL} = 3.2mA		+0.1	+0.4	or oner			V	
	Logic High, $I_{OH} = -1mA$	+2.7	+4.9	1W 10391	RUBITS S	mance	53193 - Z	v	
Internal Clock Frequency	Logio High, IOH - HINK	1	17					MHz	
Status	djust	Low Lev	vel When Da	ata Valid					
POWER SUPPLY REQUIREMENTS	U Gain Adjust	0 20.1020		810 <u>0</u> 100				1	
	0	1	1	45				L	
Supply Voltages: +V _{cc}	Operating	+14.25	+15	+15.75				V	
-V _{cc 18} 9	12-Bit	-14.25	-15	-15.75				V	
+V _{DD}	Successive Approx	+4.75	+5	+5.25				mA	
Supply Currents: +Icc	Operating	127	26	30		*		mA	
-I _{cc}			-110	-140				mA	
O Statool+		1 1	60	80			Androg	mA	
Power Consumption	Operating		2.3	2.8	12	· · · · · · · · · · · · · · · · · · ·	Signat	°C/₩	
Thermal Resistance, $\theta_{\mu}^{(8)}$			8.7						

* Specification same as ADS602JG.

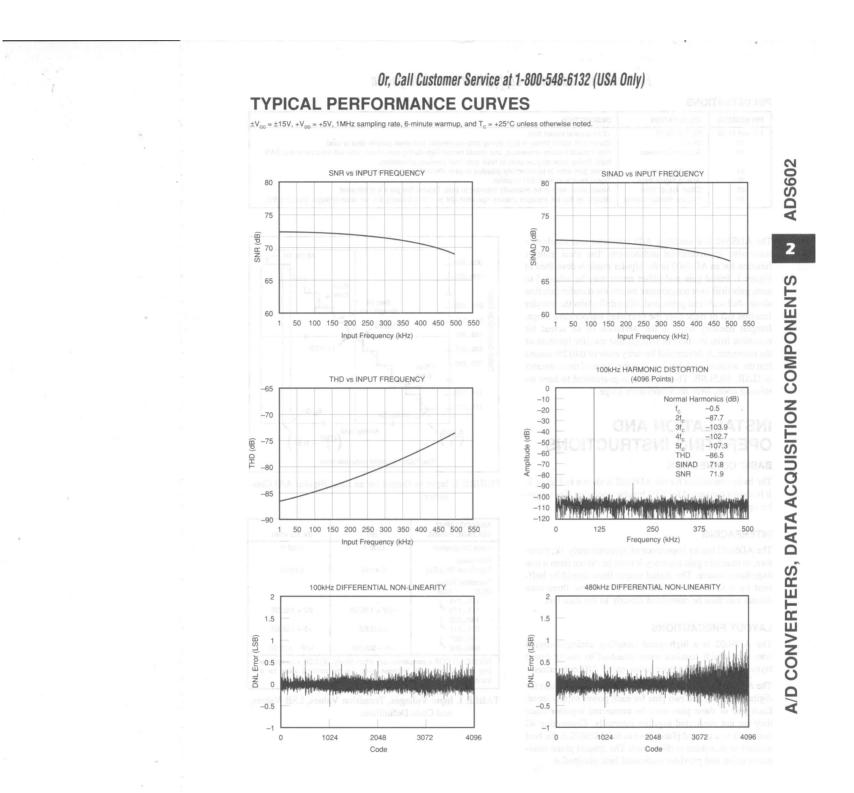
The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems. tidmes: PO Box 1140: Cable: BBRCORP

Or, Call Customer Service at 1-800-548-6132 (USA Only)

SPECIFICATIONS (CONT)


ELECTRICAL	(FULL	TEMPERATURE	SPECIFICATIONS)
------------	-------	-------------	-----------------

	16	ADS602JG			ADS602KG			
PARAMETER 00000 A(V31-) 00V-	CONDITIONS	MIN	ТҮР	MAX	MIN	TYP	MAX	UNITS
TEMPERATURE RANGE SPECIFICATION	T _{CASE}	0		+70	B¥ 4		•	°C
TRANSFER CHARACTERISTICS				5	BH S			
STATIC ACCURACY	27		9		84.6			
Gain Error (4) Jugot taujbA teatto	25 26		±0.2	±0.5) Digital	±0.1	±0.4	% of FSR
Input Offset Error (4): Unipolar			±0.1	±0.8	(Actinici)		±0.4	% of FSR
Bipolar	<u>A</u>		±0,1	±0.6	(rendro)	non *	±0.4	% of FSR
Integral Linearity Error 10001 0000A micio	24		1.25	1.5	metoene	xtern n i Cor	1.25	LSB
Differential Linearity Error	[CC		1.25	1.5	Status	1	1.25	LSB
No Missing Codes	HN8 V	h	Guaranteed					
Power Supply Rejection of Offset and Gain	Amp 22		±0.0036	0.5	Bh Z			%FSR/%V
Common (Digital)	12		±0.001	0.5	8 118.	*		%FSR/%V
CONVERSION CHARACTERISTICS	105	>		Èt	6 118			
Sample Rate concerned terretical off exist	Without User Adjustment	DC		1M	Bit*IO		•	samples/s
Power Supply Rejection of Conversion Time	$\Delta + V_{DD} = \pm 5\%$		±1		11110			ns/%V _{DD}
DYNAMIC CHARACTERISTICS (The same	bling frequency $[f_c] = 1$ MHz and the	e input sig	nal level ~ -	0.5dB, unl	ess otherwis	se stated.)		
Differential Linearity Error	f _c = 480kHz, 68% of All Codes		0.35			0.25		LSB
enoroniai Enoany Enor	$r_c = 480 \text{ kHz}, 68\% \text{ of All Codes}$ 99% of All Codes		0.35			0.6		LSB
	100% of All Codes		1.3			1	1.25	LSB
Spurious Free Dynamic Range	$f_c = 10 \text{kHz}$		73			85	71	dB
opunous rice Dynamic Hange	$f_c = 480 \text{kHz}$		62			65		dB
Total Harmonic Distortion	$f_c = 10 \text{kHz}$		-81			-83	-70	dBc
AOTA	$f_c = 10$ kHz $f_c = 480$ kHz		-63		PATING	-65	AMBI	dBc
Two-Tone Intermodulation Distortion (7)	$f_c = 90$ kHz and 110kHz (-6.5dB)	[way	-77			-79		dBc
Signal-to-Noise and Distortion	$f_c = 10 \text{kHz}$	±18V	71		68	70	0.0000.00	dB
(SINAD) Ratio	$f_c = 480 \text{kHz}$	Vita	63			64	10 10 10 10 10 10 10 10 10 10 10 10 10 1	dB
Signal-to-Noise Ratio (SNR)	$f_c = 10 \text{kHz}$	V8.84	71		70	73	5 errenser	dB
onutoraqueo	$f_c = 480 \text{kHz}$	_{co} V±	67		67	69	21	dB
Analog Input Bandwidth (-3dB)		25°C	- · · · ·		· · · · · · · · · · · · · · · · · · ·		enutsne	Case Contra
Small Signal	-20dB Input		16				ELTIBLEC.	MHz
Full Power	0dB	50°C	4			•	ande ladu	MHz
DIGITAL CHARACTERISTICS			boweb onit e	Spiner (n	herrenned Y	our straiga	Baorii Bya	00 20200000
INPUT								
Logic Family		TTL-	Compatible (CMOS	 MIC 	NTAMS.	E NEO	ACKAG
Convert Command Logic Voltages	Logic Low	0	1	+0.8	•			V
	Logic High	+2	GE ORAW	+Vpp	•			V
Convert Command Currents	Logic Low		RESMU	-150				μΑΟΜ
Convert Command	mand High Level When Converting		onverting	• oic	nauð als i	•	ADSB02.1G	
OUTPUT		nieb.tr		ania oldat	opiecomily	ous colwas	o baliatab	of marte
Logic Family		TTL-	Compatible		G pate 6	TWO IN S	to Owiha	and the loss
Bits 1 through 12, Status	Logic Low, $I_{OL} = 3.2mA$	6 -	+0.1	+0.4				V
	Logic High, $I_{OH} = -1mA$	+2.7	+4.9		· ·			V
Internal Clock Frequency		1.001	17					MHz
Status		Low Le	vel When Da	ata Valid				
POWER SUPPLY REQUIREMENTS	1		· · · · ·		1		1	1
Supply Voltages: +V _{cc}	Operating	+14.25	+15	+15.75			*	V
-V _{cc}		-14.25	-15	-15.75	•	•	*	V
+V _{pp}		+4.75	+5	+5.25			*	mA
Supply Currents: +I _{cc}	Operating		26	30		*	*	mA
-I _{cc}			-110	-140				mA
+l _{pp}			60	80		*	*	mA
Power Consumption	Operating		2.3	2.8				W
Thermal Resistance, $\theta_{\mu}^{(8)}$			8.7			*		°C/W


* Specification same as ADS602JG.

* Specification same as ADS602JG.
NOTES: (1) Over or under range on the analog input results in constant maximum or minimum digital output. (2) FSR = Full Scale Range. (3) Adjustable to zero.
(4) If gain and offset adjust pins are not used, they should be grounded. (5) See Typical Performance Curves. (6) dBc = level referred to carrier input signal = -0.5dB of full scale; f_c = input frequency, f_s = sampling frequency. (7) IMD is referred to the larger of the two input test signals. If referred to the peak envelope signal (=0dB), the intermodulation products will be 6dB lower. (8) Temperature ranges refer to case temperature. Thermal resistance was measured on a small (5" diameter) handwired circuit board, with the test device in a zero-insertion-force socket. Thermal resistance will be lower if the ADS602 is soldered into the PC board, a ground plane is used directly underneath the package, multiple PC board layers are used, or forced air cooling is employed. Use heat sinking if necessary to keep the case at specified and operating temperatures.

Burr-Brown IC Data Book—Data Conversion Products

For Immediate Assistance, Contact Your Local Salesperson

PIN DEFINITIONS

PIN NUMBER	DESIGNATION	DESCRIPTION
1-6 and 11-16	Bit 1 to Bit 12	12-bit parallel output data.
10	Status	Conversion status strobe is high during data conversion, low when parallel data is valid.
18	Convert Command	High transition starts conversion, and should remain high during conversion. Low will reset clock and SAF
		logic. Rising edge may be used to latch data from previous conversion.
24	Gain Adjust Input	Allows gain error to be externally adjusted to zero. Ground this pin if it is not used.
25	Analog Signal Input	Signal input to internal S/H amplifier.
26	Offset Adjust Input	Allows offset error to be externally adjusted to zero. Ground this pin if it is not used.
29	Unipolar/Bipolar Control	Ground on this pin engages unipolar operation (0V to +10V). Leaving this pin open engages bipolar (±5V)

The ADS602 is a sampling A/D converter that employs a successive approximation architecture. The ideal transfer function for an ADS602 in the bipolar mode is described in Figure 1. Initial gain and offset errors may be adjusted to zero, gain drift over temperature rotates the transfer function about –full scale end point, and offset drift shifts the transfer function left or right over the operating temperature range. Integral linearity error is the deviation of an actual bit transition from the best fit straight line transfer function of the converter. A differential linearity error of 0.012% means that the width of each bit step over the range of the converter is 1LSB, \pm 0.5LSB. The ADS602 is guaranteed to have no missing codes over its temperature range.

INSTALLATION AND OPERATING INSTRUCTIONS

BASIC CONNECTION

The basic connection for the ADS602 is shown in Figure 2. It is shown connected for $\pm 5V$ bipolar operation. For unipolar operation, pin 29 should be grounded.

INTERFACING

The ADS602 has an impedance of approximately 1k; therefore, to maintain gain accuracy it must be driven from a low impedance source. The digital output lines should be buffered by a latch such as the 74AS574. These three-state drivers can then be connected directly to the data bus.

LAYOUT PRECAUTIONS

The ADS602 is a high-speed sampling analog-to-digital converter which requires more attention to circuit board layout than general purpose lower speed A/D converters. The ADS602 has two pins for analog common, two pins for

digital common, and two pins for each power supply input. Each pair of these pins must be connected together since they are not connected together internally. Connecting all commons to a ground plane close to the ADS602 is the best method to maximize performance. The ground plane minimizes noise and provides additional heat dissipation.

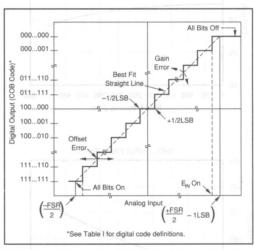


FIGURE 1. Input vs Output for an Ideal Bipolar A/D Converter.

ANALOG INPUT VOLTAGE RANGE	±5V	0V TO +10V		
Code Designation	COB (1)	CSB (2)		
One Least Significant Bit (LSB)	2.44mV	2.44mV		
Transition Values MSB LSB (3)	LINTERENTAL NON-H	noi001		
111111	-5V + 1/2LSB	0V + 1/2LSB		
100000 011111	-1/2LSB	+5 – 1/2LSB		
000000	+5 - 3/2LSB	10V - 3/2LSB		

TABLE I. Input Voltages, Transition Values, LSB Values, and Code Definitions.

Or, Call Customer Service at 1-800-548-6132 (USA Only)

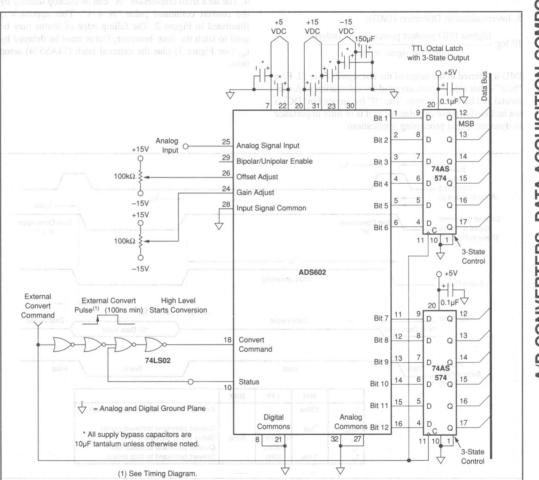
POWER SUPPLY DECOUPLING AND POWER SUPPLY SENSITIVITY

The +15V and +5V power supply pins should be bypassed with a 10 μF tantalum capacitor as shown in Figure 2. Pin 30 requires bypassing with a 150µF tantalum capacitor. These capacitors should be located close to the ADS602 supply pins. Ceramic 0.01µF bypass capacitors have been provided internally for more effective bypassing and need not be added externally.

Changes in the DC power supply voltages will affect accuracy. Regulated power supplies with 1% or less ripple are recommended for use with the ADS602. Power supply decoupling helps to keep ripple low.

POWER DISSIPATION

The ADS602 dissipates approximately 2.3W. The package has a junction-to-case thermal resistance (θ_{ic}) of 8.7°C/W


and a case-to-ambient thermal resistance ($\theta_{\rm CA})$ of 13.7°C/W in a normal convection environment.

OPTIONAL EXTERNAL GAIN AND OFFSET ADJUSTMENTS

Gain and offset errors may be trimmed to zero using external trim potentiometers as shown in Figure 2. Multiturn potentiometers with 100ppm/°C temperature coefficient are recommended for minimum drift. If the gain adjust or offset adjust pins are not used, they must be grounded to meet the specified accuracy.

DYNAMIC PERFORMANCE TESTING

The ADS602 is a high performance sampling A/D converter and careful attention to test techniques is necessary to achieve accurate results. Spectral analysis by application of a fast Fourier transform (FFT) to the ADC digital output will provide data on important dynamic performance parameters.

A/D CONVERTERS, DATA ACQUISITION COMPONENTS

ADS602

2

FIGURE 2. ADS602 Application Circuit.

For Immediate Assistance, Contact Your Local Salesperson

Dynamic Performance Definitions

1. Signal-to-Noise-and-Distortion Ratio (SINAD):

sinewave signal power

10 log $\frac{10}{\text{noise + harmonic power (first 9 harmonics)}}$

2. Signal-to-Noise Ratio (SNR):

sinewave signal power

10 log noise power

3. Total Harmonic Distortion (THD):

harmonic power (first 9 harmonics) 10 log sinewave signal power

4. Spurious Free Dynamic Range (SFDR): largest harmonic power

10 log sinewave signal power

5. Intermodulation Distortion (IMD):

highest IMD product power (to 5th order) 10 log sinewave signal power

IMD is referred to the larger of the test signals f1 or f2. Five "bins" either side of peak are used for calculation of fundamental and harmonic power. The "0" frequency bin (DC) is not included in these calculations as it is of little importance TIMING CONSIDERATIONS

In addition to the timing details in Figure 3, the following list contains some important timing considerations for the ADS602:

1. When power is first applied, the convert command should be held low or below the +5V supply to prevent latch up.

2. The rising edge of the convert command pulse initiates a conversion. This convert command should remain high until the Status falls (i.e., the internal ADC is finished converting). A simple circuit that provides the correct convert command (pin 18) pulse length, is shown in Figure 2.

3. The ADS602 goes directly into the "hold" mode when a convert command signal is given. The Status falls approximately 780ns later, indicating that the conversion is complete. At this time, the sample-hold (internal to the ADS602) enters the track mode. The ADS602 will remain in the track mode until the next convert command is given.

4. The data from conversion "N" can be latched directly by the convert command pulse "N + 1". This approach is illustrated in Figure 2. The falling edge of Status may be used to latch the data; however, Status must be delayed by t_{sD} (see Figure 3) plus the external latch (74AS574) setup time.

External Convert Command	t _{CH}	elden	et laipolar E Adjust	teallO	
(Refer to Figure 2)	8 MB	āpm	Agila). Signal Com	28 100.0	
Convert Command Signal to Pin 18 (Refer to Figure 2)	Start Conversion "N"				Start Conversi "N + 1"
esare control		t _s	SL		
Status Output		A/D C	onverting		. V231
Data Valid "N-1" Data Va	lid	Data	Invalid		"N" Data Valid
Internal Track Sample/Hold Track	0 MB	Н	old	unst?	Track Hold
		MIN	TYP	MAX	
	t _{cH} t _{cc} t _{cONV}	100ns 1μs	780ns		External convert command pulse width.* Convert command minimum period.
	t _{sD} t _{SL} t _{CI}	11ns	17ns 780ns 20ns	50ns	Status low to data valid. Convert command to status low. Convert command to data invalid.

FIGURE 3. ADS602 Logic Timing Diagram.

2.146