

54FCT/74FCT533A Octal Transparent Latch with TRI-STATE® Outputs

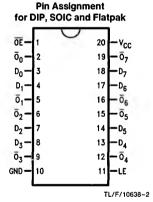
General Description

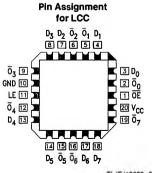
The 'FCT533A consists of eight latches with TRI-STATE outputs for bus organized system applications. The flip-flops appear transparent to the data when Latch Enable (LE) is HIGH. When LE is LOW, the data that meets the setup times is latched. Data appears on the bus when the Output Enable ($\overline{\text{OE}}$) is LOW. When $\overline{\text{OE}}$ is HIGH the bus output is in the high impedance state. The 'FCT533A is the same as the 'FCT373A, except that the outputs are inverted.

FACT FCTA utilizes NSC quiet series technology to provide improved quiet output switching and dynamic threshold performance.

FACT FCTA features undershoot correction and split ground bus for superior performance.

Features


- NSC 54FCT/74FCT533A is pin and functionally equivalent to IDT 54FCT/74FCT533A
- TRI-STATE outputs for bus interfacing
- Input clamp diodes to limit bus reflections
- TTL/CMOS input and output level compatible
- I_{OL} = 48 mA (Com), 32 mA (Mil)
- CMOS power levels
- 4 kV minimum ESD immunity
- Military product compliant to MIL-STD 883
- Inherently radiation tolerant


Ordering Code: See Section 8

Logic Symbols

IEEE/IEC OE -EN C1 Do . 1D LE D OE D2 . 01 02 03 04 05 06 03 TI /F/10638-4 05 $\bar{0}_{6}$ TL/F/10638-1

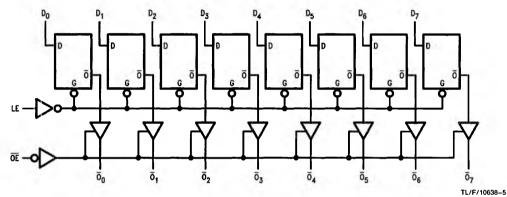
Connection Diagrams

TL/F/10638-3

Pin Names	Description				
D ₀ -D ₇	Data Inputs				
LE	Latch Enable Input (Active HIGH)				
ŌĒ	Output Enable Input (Active LOW)				
00-07	Complementary TRI-STATE Outputs				

Function Table

	Output		
LE	ŌĒ	D	ō
Н	L	Н	L
) н	L	L	Н
L	L	Х	\overline{O}_0
X	н	X	Z


H = HIGH Voltage Level

Functional Description

The 'FCT533A contains eight D-type latches with TRI-STATE output buffers. When the Latch Enable (LE) input is HIGH, data on the D_{η} inputs enters the latches. In this condition the latches are transparent and the latch output will change state each time its D input changes. When LE is LOW, the latches store the information that was present on

the D inputs a setup time preceding the HIGH-to-LOW transition of LE. The TRI-STATE buffers are controlled by the Output Enable (\overline{OE}) input. When \overline{OE} is LOW the latch contents are presented inverted at the outupts $\overline{O_7}$ – $\overline{O_0}$. When \overline{OE} is HIGH the buffers are in the high impedance mode but this does not interfere with entering new data into the latches.

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

L = LOW Voltage Level

X = Logic(0) or logic(1) must be valid Input Level

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Temperature Voltage with respect to GND (V_{TERM})

54FCTA -0.5V to +7.0V 74FCTA -0.5V to +7.0V

Temperature under Bias (T_{BIAS})

Storage Temperature (TSTG)

74FCTA -55°C to +125°C 54FCTA -65°C to +135°C

Power Dissipation (P_T)

DC Output Current (I_{OUT})

120

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. National does not recommend operation of FACT FCT circuits outside databook specifications.

Recommended Operating Conditions

Supply Voltage (V_{CC})

 54FCTA
 4.5V to 5.5V

 74FCTA
 4.75V to 5.25V

 Input Voltage
 0V to V_{CC}

 Output Voltage
 0V to V_{CC}

Operating Temperature (T_A)

54FCTA -55°C to +125°C 74FCTA 0°C to +70°C

Junction Temperature (T_J)

CDIP 175°C PDIP 140°C

DC Characteristics for FCTA Family Devices

Typical values are at $V_{CC} = 5.0V$, 25°C ambient and maximum loading. For test conditions shown as Max, use the value specified for the appropriate device type: Com: $V_{CC} = 5.0V \pm 5\%$, $T_A = 0$ °C to +70°C; Mil: $V_{CC} = 5.0V \pm 10\%$ $T_A = -55$ °C to +125°C.

Symbol	Parameter	54FCTA/74FCTA			Units	Conditions		
Symbol	raiametei	Min	Тур	Max	Oilles	Cond	iuons	
V _{IH}	Minimum HIGH Level Input Voltage	2.0			٧			
V _{IL}	Maximum Low Level Input Voltage			0.8	٧			
liH	Input High Current			5.0 5.0	μΑ	V _{CC} = Max	$V_I = V_{CC}$ $V_I = 2.7V \text{ (Note 2)}$	
IIL	Input Low Current			-5.0 -5.0	μΑ	V _{CC} = Max	V _I = 0.5V (Note 2) V _I = GND	
l _{OZ}	Maximum TRI-STATE Current			10.0 10.0 -10.0 -10.0	μΑ	$\label{eq:VCC} \begin{array}{c} \mbox{V}_{CC} = \mbox{Max} & \mbox{V}_{O} = \mbox{V}_{CC} \\ \mbox{V}_{O} = 2.7 \mbox{V (Note} \\ \mbox{V}_{O} = 0.5 \mbox{V (Note} \\ \mbox{V}_{O} = \mbox{GND} \end{array}$		
VIK	Clamp Diode Voltage		-0.7	-1.2	V	$V_{CC} = Min; I_{IN} = -18 \text{ m/s}$	\	
los	Short Circuit Current	-60	-120		mA	V _{CC} = Max (Note 1); V _O = GND		
V _{OH}	Minimum High Level	2.8	3.0			$V_{CC} = 3V$; $V_{IN} = 0.2V$ or V_{HC} ; $I_{OH} = -32 \mu A$		
	Output Voltage	V _{HC}	V _{CC}		v	V _{CC} = Min	$I_{OH} = -300 \mu A$	
		2.4	4.3			$V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OH} = -12 \text{ mA (Mil)}$	
		2.4	4.3				$I_{OH} = -15 \text{ mA (Com)}$	
V_{OL}	Maximum Low Level		GND	0.2		$V_{CC} = 3V; V_{IN} = 0.2V \text{ or } V_{IN} $	/ _{HC} ; I _{OL} = 300 μA	
	Output Voltage		GND	0.2	٧	V _{CC} = Min	$I_{OL} = 300 \mu\text{A}$	
			0.3	0.50		$V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OL} = 32 \text{ mA (Mil)}$	
			0.3	0.50			I _{OL} = 48 mA (Com)	

DC Characteristics for FCTA Family Devices

Typical values are at $V_{CC} = 5.0V$, 25°C ambient and maximum loading. For test conditions shown as Max, use the value specified for the appropriate device type: Com: $V_{CC} = 5.0V \pm 5\%$, $T_A = 0$ °C to +70°C; Mil: $V_{CC} = 5.0V \pm 10\%$ $T_A = -55$ °C to +125°C. (Continued)

Symbol	Parameter	54FCTA/74FCTA		Units	Conditions			
Symbol	y a a a motor		Тур			Cond	HAILIOIIB	
lcc	Maximum Quiescent Supply Current		0.001	1.5	mA	$\begin{aligned} &V_{CC} = Max \\ &V_{IN} \geq V_{HC}, V_{IN} \leq 0.2V \\ &f_I = 0 \end{aligned}$		
ΔI _{CC}	Quiescent Supply Current; TTL Inputs HIGH		0.5	2.0	mA	V _{CC} = Max V _{IN} = 3.4V (Note 3)		
ICCD	Dynamic Power Supply Current (Note 4)		0.25	0.45	mA/MHz	V _{CC} = Max Outputs Open $\overline{\text{OE}}$ = GND LE = V _{CC} One Input Toggling 50% Duty Cycle	V _{IN} ≥ V _{HC} V _{IN} ≤ 0.2V	
I _C Total Power Supply Current (Note	Total Power Supply Current (Note 6)		1.5	4.5		V _{CC} = Max Outputs Open OE = GND LE = V _{CC} f _I = 10 MHz One Bit Toggling 50% Duty Cycle	V _{IN} ≥ V _{HC} V _{IN} ≤ 0.2V	
			1.8	5.0	mA		V _{IN} = 3.4V V _{IN} = GND	
	3.0 8.0 (Note 5) V _{CC} = Max Outputs Open OE = GND	V _{CC} = Max Outputs Open	V _{IN} ≥ V _{HC} V _{IN} ≤ 0.2V					
			5.0	14.5		LE = V _{CC} f _I = 2.5 MHz Eight Bits Toggling 50% Duty Cycle	V _{IN} = 3.4V V _{IN} = GND	
VH	Input Hysteresis on Clock Only		200		mV			

Note 1: Maximum test duration not to exceed one second, not more than one output shorted at one time.

Note 2: This parameter guaranteed but not tested.

Note 3: Per TTL driven input ($V_{IN} = 3.4V$); all other inputs at V_{CC} or GND.

Note 4: This parameter is not directly testable, but is derived for use in Total Power Supply calculations.

Note 5: Values for these conditions are examples of the I_{CC} formula. These limits are guaranteed but not tested.

Note 6: IC = IQUIESCENT + INPUTS + IDYNAMIC

 $I_C = I_{CC} + \Delta I_{CC} D_H N_T + I_{CCD} (f_{CP}/2 + f_I N_I)$

I_{CC} = Quiescent Current

 ΔI_{CC} = Power Supply Current for a TTL High Input (V_{IN} = 3.4V)

D_H = Duty Cycle for TTL inputs High

 N_T = Number of Inputs at D_H

I_{CCD} = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)

f_{CP} = Clock Frequency for Register Devices (Zero for Non-Register Devices)

f_I = Input Frequency

 $N_I = Number of Inputs at f_I$

All currents are in milliamps and all frequencies are in megahertz.

AC Electrical Characteristics: See Section 2 for Waveforms

Symbol Parameter		54FCTA/74FCTA	74F	CTA	54F0	CTA		
	Parameter	T _A = +25°C V _{CC} = +5.0V	R _L =	= Com 500Ω 50 pF	T_A , $V_{CC} = Mil$ $R_L = 500\Omega$ $C_L = 50 pF$		Units	Fig. No.
	Тур	Min	Max	Min	Max			
t _{PLH} t _{PHL}	Propagation Delay D _n to O n	4.0	1.5	5.2			ns	2-8
t _{PLH} t _{PHL}	Propagation Delay LE to On	7.0	2.0	8.5			ns	2-8
t _{PZH} t _{PZL}	Output Enable Time	5.5	1.5	6.5			ns	2-11
t _{PHZ}	Output Disable Time	4.0	1.5	5.5			ns	2–11
ts	Set Up Time High or Low D _n to LE	1.0	2.0			-	ns	2-10
t _H	HOLD Time High or Low D _n to LE	1.0	1.5			-	ns	2-10
t _W	LE Pulse Width High or Low	4.0	5.0				ns	2-9

Minimum limits are guaranteed but not tested on Propagation Delays

Capacitance ($T_A = +25C$, f = 1.0 MHz)

Symbol	Parameter	Тур	Max	Units	Conditions
C _{in}	Input Capacitance	6	10	pF	$V_{IN} = 0V$
Cout	Output Capacitance	8	12	pF	V _{out} = 0V

Note: This parameter is measured at characterization but not tested